Learning From Less Optimization Proxies under Time-Sample Constrained Settings

> Parikshit Pareek IIT Roorkee & T-5, LANL

Work done with Kaarthik, Deep and Sidhant

pareek@ee.iitr.ac.in

 Ω

メロトメ 倒す メミトメミト 一番

$$
T_{Total} = T_{Data} + T_{Training} + T_{Prediction}
$$

The Problem

How to Overcome Constraints on Training Time and Data?

\rightarrow Optimization proxies must be trained efficiently within strict time constraints

- \rightarrow Operational time constraints
- \gg Speed requirements for large-scale simulations

 \rightarrow Optimization proxies must be trained efficiently within strict time constraints

- \rightarrow Operational time constraints
- \gg Speed requirements for large-scale simulations

 \rightarrow Obtaining training data is time-consuming or not feasible

- \rightarrow Large-scale problem solutions produce only a single data point
- \gg Limited data related to rare or less probable events

 \rightarrow Optimization proxies must be trained efficiently within strict time constraints

- \rightarrow Operational time constraints
- \gg Speed requirements for large-scale simulations

 \rightarrow Obtaining training data is time-consuming or not feasible

- \rightarrow Large-scale problem solutions produce only a single data point
- \gg Limited data related to rare or less probable events

Exercise 1 Physical systems require 'some' guarantees on learning quality

 \gg Vanilla statistical validation demands a large validation dataset

Hoeffding's Inequality: $\varepsilon \propto 1/3$ √ N

Current DNN Proxies: All Permutations & Combinations

- \rightarrow Supervised DNN models with different architectures and settings
	- F Supervised Loss: Mean Square Error (MSE), Mean Absolute Error (MAE)
	- \gg Supervised Losses + Penalty : MSE/MAE + λ [Constraint Violation]
	- **Partial Predict + Power Flow:** Predict P_a , Q_q & solve power flow for $|V|$, θ

\rightarrow Semi-Supervised DNN models

- **EX** Use Power Flow Jacobian during training
- **EXECUTE:** Use Power Flow Jacobian at correction stage
- \gg Last layer– sigmoid based output clipping for correction
- **► Self-Supervised/Unsupervised DNN models**
	- \triangleright Loss Function: Cost + λ [Constraint Violation]
	- \rightarrow Update weights λ in primal-dual fashion

Issues

Large Labeled Data, Large Training & Predicti[on](#page-4-0) [Ti](#page-6-0)[m](#page-4-0)[e](#page-5-0)[,](#page-6-0)

KOD KORK KEX KE

 \rightarrow What are Bayesian Neural Networks (BNNs)?

- \gg BNNs treat weights as probability distributions instead of fixed values
- \gg Provide a probability distribution over outputs instead of single deterministic predictions.

\rightarrow What are Bayesian Neural Networks (BNNs)?

- \gg BNNs treat weights as probability distributions instead of fixed values
- \gg Provide a probability distribution over outputs instead of single deterministic predictions.

\rightarrow Why are BNNs better than DNNs for low data?

- \gg Incorporate **prior knowledge** and effectively model uncertainty in data and parameters.
- \gg Prevent overfitting: Weight Distribution, Regularization via Priors, Posterior Averaging

\rightarrow What are Bayesian Neural Networks (BNNs)?

- \gg BNNs treat weights as probability distributions instead of fixed values
- \gg Provide a probability distribution over outputs instead of single deterministic predictions.

\rightarrow Why are BNNs better than DNNs for low data?

- \gg Incorporate **prior knowledge** and effectively model uncertainty in data and parameters.
- \gg Prevent overfitting: Weight Distribution, Regularization via Priors, Posterior Averaging

\bigstar Advantages over DNNs:

- \gg Separates two types of uncertainty:
	- \blacktriangleright Epistemic uncertainty: Uncertainty in model parameters $p(w|D)$.
	- \blacktriangleright Aleatoric uncertainty: Noise inherent in data $p(y|x, w)$.
- \gg Assigns high uncertainty to points far from the training set, avoiding overconfident predictions.

More on BNN

\blacktriangleright How do BNNs work?

 \gg Use Bayes' theorem to update weight distributions:

$$
p(w|D) = \frac{p(D|w) p(w)}{p(D)} \quad w : \text{weights}, D : \text{data}, p(w) : \text{prior}, p(D|w) : \text{likelihood}.
$$

\rightarrow Core Equations of BNNs:

 \triangleright Prediction distribution:

$$
p(y|x, D) = \int p(y|x, w) p(w|D) dw
$$

- \gg Approximated using Monte Carlo or variational techniques.
- \gg Training a BNN is slower than Training a DNN

★ Standard Constrained Optimization Problem \min $c(\mathbf{y})$ y $c(\mathbf{y})$ (1a) s.t. $g(x, y) = 0$ (1b) $h(\mathbf{x}, \mathbf{y}) \leq 0$ (1c) x is given (input vector)

\rightarrow **Standard Constrained Optimization Problem**

$$
\min_{\mathbf{y}} \quad c(\mathbf{y}) \tag{1a}
$$

$$
s.t. \t g(x, y) = 0 \t (1b)
$$

$$
h(\mathbf{x}, \mathbf{y}) \leq 0 \tag{1c}
$$

x is given (input vector)

\bigstar Target:

Develop a **Fast Evaluating** proxy such that: $y = M_w(x)$

\rightarrow **Standard Constrained Optimization Problem**

$$
\min_{\mathbf{y}} c(\mathbf{y}) \tag{1a}
$$

$$
s.t. \t g(\mathbf{x}, \mathbf{y}) = 0 \t (1b)
$$

$$
h(\mathbf{x}, \mathbf{y}) \leq 0 \tag{1c}
$$

x is given (input vector)

\bigstar Target:

Develop a **Fast Evaluating** proxy such that: $y = M_w(x)$

\blacktriangleright Motivation:

Training-validation data collection is **Expensive** & need to **Train** $\mathcal{M}_w(\mathbf{x})$ **Fast**

6 / 15

\rightarrow **Standard Constrained Optimization Problem**

$$
\min_{\mathbf{y}} c(\mathbf{y}) \tag{1a}
$$

$$
s.t. \t g(\mathbf{x}, \mathbf{y}) = 0 \t (1b)
$$

$$
h(\mathbf{x}, \mathbf{y}) \leq 0 \tag{1c}
$$

x is given (input vector)

\bigstar Target:

Develop a **Fast Evaluating** proxy such that: $\mathbf{v} = \mathcal{M}_w(\mathbf{x})$

\blacktriangleright Motivation:

Training-validation data collection is **Expensive** & need to **Train** $\mathcal{M}_w(\mathbf{x})$ **Fast**

\bigstar Idea:

Using large unlabeled dataset to enforce **Feasibility** & limited supervised dataset for Optimality $+$ Feasibility

Feasibility Condition

$$
\mathcal{F}(\mathbf{y},\mathbf{x}) = \lambda_e \underbrace{\left\|g(\mathbf{x},\mathbf{y})\right\|^2}_{\text{Equality Gap}} + \lambda_i \underbrace{\left\|\text{ReLU}[h(\mathbf{x},\mathbf{y})]\right\|^2}_{\text{Inequality Gap}}.
$$

Feasibility Condition on Network Weights

Network weights should be such that, for any input, predicted output provides $\mathcal{F}(\mathbf{y}, \mathbf{x}) = 0$

If input sampling is cheap, we can create an Augmented Labeled Dataset for Free

$$
\mathcal{D}^f = \{(\mathbf{x}_j, \mathcal{F}(\cdot, \mathbf{x}) = 0)\}_{j=1}^M
$$

 (2)

Alternating Training Phases for BNNs in Time-Constrained Bursts

 \blacktriangleright Selection via Posterior: Among BNN weights, select the one providing 'Best' results for the selected criteria

$$
W^{\star} = \arg\min_{j} \left[\max_{i} \left| g_i(\mathbf{x}^t, \mathbf{Y}_{\cdot j}) \right| \right] : \quad \text{Minimizes the maximum equality gap}
$$

メロト メタト メモト メモト 一毛 8 / 15

Bounding the Error

$$
\mathbb{P}\bigg\{\bigg|\mathbb{E}[\left|e\right|] - \frac{1}{M} \sum_{i=1}^{M} |e_i| \bigg| \leqslant \varepsilon\bigg\} \geqslant 1 - \delta
$$

Error bound ε in PCBs, provided by different concentration inequalities.

Hoeffding's Empirical Bernstein Theoretical Bernstein $R\sqrt{\frac{\log(2/\delta)}{2M}}$ $2M$ $\sqrt{\frac{2\widehat{\mathbb{V}}_{e}\log(3/\delta)}{M}}+\frac{3R\log(3/\delta)}{M}$ M $\sqrt{\frac{2\mathbb{V}_e\log(1/\delta)}{M}}+\frac{2R\log(1/\delta)}{3M}$ 3M \blacklozenge Hypothesis: α MPV $\geqslant \mathbb{V}_e = \mathbb{E}_M \left[\mathbb{V}_W[e] \right] + \mathbb{E}_W \left[\mathbb{V}_M[e] \right] \geqslant \mathbb{V}_{|e|}$ Total Variance in Error Proposed Bound:

$$
\sqrt{\frac{2(2 \times \text{MPV}) \log{(1/\delta)}}{M}} + \frac{2R \log{(1/\delta)}}{3M}
$$

9 / 15

Table: Comparative performance results for the ACOPF Problem for 'case57' with 512 labeled training samples, 2048 unlabeled samples, and $T_{\text{max}} = 600$ sec.

Table: Comparative performance results for the ACOPF Problem for 'case118' with 512 labeled training samples, 2048 unlabeled samples, and $T_{\text{max}} = 600$ sec.

Table: Comparative performance results for the ACOPF Problem for case500 with 512 labeled training samples, 2048 unlabeled samples and $T_{max} = 600$ sec.

Figure: Empirical study comparing total variance in error \hat{V}_e with $2 \times \text{MPV}$ across different cases of ACOPF and the proposed learning mechanisms.

Probabilistic Bounds

 \rightarrow Theoretical Bernstein bounds with 2 ×MPV are tightest.

We consider $\delta = 0.95$ and [1](#page-20-0)[00](#page-21-0)0 *out-of-sample* testing data points i.e. $M = 1000$ $M = 1000$ \rightarrow Þ $2Q$

Conclusions & Future Questions

- **EXECUTE:** BNNs outperform DNNs in low data and low training time settings
- \rightarrow Sandwich BNNs generally better at enforcing feasibility compared to Supervised BNNs
	- ? Will GPUs make BNNs better, as they are harder to train?
	- ? How to put cost function in unsupervised stage?
	- ? What if DNN is used for unsupervised stage while BNN for supervised?

Write to me at pareek@ee.iitr.ac.in

Related Papers:

- ▶ P. Pareek, K. Sundar, D. Deka, & S. Misra (2024) "Optimization Proxies using Limited Labeled Data and Training Time–A Semi-Supervised Bayesian Neural Network Approach", ArXiv:2410.03085.
- ▶ P. Pareek, K. Sundar, D. Deka, & S. Misra (2024) "Learning from Less: Bayesian Neural Networks for Optimization Proxy using Limited Labeled Data", NeurIPS 2024 Workshop on Bayesian Decision-making and Uncertainty. **KORK KORK KERK EL POLO**