
Learning From Less
Optimization Proxies under Time-Sample Constrained Settings

Parikshit Pareek
IIT Roorkee & T-5, LANL

Work done with Kaarthik, Deep and Sidhant

pareek@ee.iitr.ac.in

1 / 15

The ML’s Time Equation

TData

Training Data Generation
Validation Data Generation

TTraining

Hyperparameter Optimization
Variational Inference

TPrediction

Prediction Time
Validation Time

TTotal = TData + TTraining + TPrediction

The Problem

How to Overcome Constraints on Training Time and Data?

1 / 15

Time and Data Constraints

 Optimization proxies must be trained efficiently within strict time
constraints

∠ Operational time constraints

∠ Speed requirements for large-scale simulations

 Obtaining training data is time-consuming or not feasible

∠ Large-scale problem solutions produce only a single data point

∠ Limited data related to rare or less probable events

 Physical systems require ‘some’ guarantees on learning quality

∠ Vanilla statistical validation demands a large validation dataset

Hoeffding’s Inequality: ε ∝ 1/
√
N

2 / 15

Time and Data Constraints

 Optimization proxies must be trained efficiently within strict time
constraints

∠ Operational time constraints

∠ Speed requirements for large-scale simulations

 Obtaining training data is time-consuming or not feasible

∠ Large-scale problem solutions produce only a single data point

∠ Limited data related to rare or less probable events

 Physical systems require ‘some’ guarantees on learning quality

∠ Vanilla statistical validation demands a large validation dataset

Hoeffding’s Inequality: ε ∝ 1/
√
N

2 / 15

Time and Data Constraints

 Optimization proxies must be trained efficiently within strict time
constraints

∠ Operational time constraints

∠ Speed requirements for large-scale simulations

 Obtaining training data is time-consuming or not feasible

∠ Large-scale problem solutions produce only a single data point

∠ Limited data related to rare or less probable events

 Physical systems require ‘some’ guarantees on learning quality

∠ Vanilla statistical validation demands a large validation dataset

Hoeffding’s Inequality: ε ∝ 1/
√
N

2 / 15

Current DNN Proxies: All Permutations & Combinations

 Supervised DNN models with different architectures and settings
∠ Supervised Loss: Mean Square Error (MSE), Mean Absolute Error (MAE)
∠ Supervised Losses + Penalty : MSE/MAE + λ[Constraint Violation]
∠ Partial Predict + Power Flow: Predict Pg, Qg & solve power flow for |V |, θ

 Semi-Supervised DNN models
∠ Use Power Flow Jacobian during training
∠ Use Power Flow Jacobian at correction stage
∠ Last layer– sigmoid based output clipping for correction

 Self-Supervised/Unsupervised DNN models
∠ Loss Function: Cost + λ[Constraint Violation]
∠ Update weights λ in primal-dual fashion

Issues

Large Labeled Data, Large Training & Prediction Time,

3 / 15

Bayesian for Rescue under Low Data

 What are Bayesian Neural Networks (BNNs)?

∠ BNNs treat weights as probability distributions instead of fixed values

∠ Provide a probability distribution over outputs instead of single deterministic predictions.

 Why are BNNs better than DNNs for low data?

∠ Incorporate prior knowledge and effectively model uncertainty in data and parameters.

∠ Prevent overfitting: Weight Distribution, Regularization via Priors, Posterior
Averaging

 Advantages over DNNs:
∠ Separates two types of uncertainty:

▶ Epistemic uncertainty: Uncertainty in model parameters p(w|D).
▶ Aleatoric uncertainty: Noise inherent in data p(y|x,w).

∠ Assigns high uncertainty to points far from the training set, avoiding overconfident
predictions.

4 / 15

Bayesian for Rescue under Low Data

 What are Bayesian Neural Networks (BNNs)?

∠ BNNs treat weights as probability distributions instead of fixed values

∠ Provide a probability distribution over outputs instead of single deterministic predictions.

 Why are BNNs better than DNNs for low data?

∠ Incorporate prior knowledge and effectively model uncertainty in data and parameters.

∠ Prevent overfitting: Weight Distribution, Regularization via Priors, Posterior
Averaging

 Advantages over DNNs:
∠ Separates two types of uncertainty:

▶ Epistemic uncertainty: Uncertainty in model parameters p(w|D).
▶ Aleatoric uncertainty: Noise inherent in data p(y|x,w).

∠ Assigns high uncertainty to points far from the training set, avoiding overconfident
predictions.

4 / 15

Bayesian for Rescue under Low Data

 What are Bayesian Neural Networks (BNNs)?

∠ BNNs treat weights as probability distributions instead of fixed values

∠ Provide a probability distribution over outputs instead of single deterministic predictions.

 Why are BNNs better than DNNs for low data?

∠ Incorporate prior knowledge and effectively model uncertainty in data and parameters.

∠ Prevent overfitting: Weight Distribution, Regularization via Priors, Posterior
Averaging

 Advantages over DNNs:
∠ Separates two types of uncertainty:

▶ Epistemic uncertainty: Uncertainty in model parameters p(w|D).
▶ Aleatoric uncertainty: Noise inherent in data p(y|x,w).

∠ Assigns high uncertainty to points far from the training set, avoiding overconfident
predictions.

4 / 15

More on BNN

 How do BNNs work?

∠ Use Bayes’ theorem to update weight distributions:

p(w|D) =
p(D|w) p(w)

p(D)
w : weights, D : data, p(w) : prior, p(D|w) : likelihood.

 Core Equations of BNNs:

∠ Prediction distribution:

p(y|x,D) =

∫
p(y|x,w) p(w|D) dw

∠ Approximated using Monte Carlo or variational techniques.
∠ Training a BNN is slower than Training a DNN

5 / 15

Our Problem, Target, Motivation and Idea

 Standard Constrained Optimization Problem
min
y

c(y) (1a)

s.t. g(x,y) = 0 (1b)

h(x,y) ⩽ 0 (1c)

x is given (input vector)

 Target:
Develop a Fast Evaluating proxy such that: y = Mw(x)

 Motivation:
Training-validation data collection is Expensive & need to Train Mw(x) Fast

 Idea:
Using large unlabeled dataset to enforce Feasibility & limited supervised dataset
for Optimality + Feasibility

6 / 15

Our Problem, Target, Motivation and Idea

 Standard Constrained Optimization Problem
min
y

c(y) (1a)

s.t. g(x,y) = 0 (1b)

h(x,y) ⩽ 0 (1c)

x is given (input vector)

 Target:
Develop a Fast Evaluating proxy such that: y = Mw(x)

 Motivation:
Training-validation data collection is Expensive & need to Train Mw(x) Fast

 Idea:
Using large unlabeled dataset to enforce Feasibility & limited supervised dataset
for Optimality + Feasibility

6 / 15

Our Problem, Target, Motivation and Idea

 Standard Constrained Optimization Problem
min
y

c(y) (1a)

s.t. g(x,y) = 0 (1b)

h(x,y) ⩽ 0 (1c)

x is given (input vector)

 Target:
Develop a Fast Evaluating proxy such that: y = Mw(x)

 Motivation:
Training-validation data collection is Expensive & need to Train Mw(x) Fast

 Idea:
Using large unlabeled dataset to enforce Feasibility & limited supervised dataset
for Optimality + Feasibility

6 / 15

Our Problem, Target, Motivation and Idea

 Standard Constrained Optimization Problem
min
y

c(y) (1a)

s.t. g(x,y) = 0 (1b)

h(x,y) ⩽ 0 (1c)

x is given (input vector)

 Target:
Develop a Fast Evaluating proxy such that: y = Mw(x)

 Motivation:
Training-validation data collection is Expensive & need to Train Mw(x) Fast

 Idea:
Using large unlabeled dataset to enforce Feasibility & limited supervised dataset
for Optimality + Feasibility

6 / 15

The TL;DR: An Optimal Solution Has To Be Feasible

Feasibility Condition

F(y,x) = λe

∥∥g(x,y)∥∥2︸ ︷︷ ︸
Equality Gap

+λi

∥∥ReLU[h(x,y)]∥∥2︸ ︷︷ ︸
Inequality Gap

. (2)

Feasibility Condition on Network Weights

Network weights should be such that, for any input, predicted output provides
F(y,x) = 0

If input sampling is cheap, we can create an Augmented Labeled Dataset for
Free

Df = {(xj ,F(·,x) = 0)}Mj=1

7 / 15

Sandwich Model

Alternating Training Phases for BNNs in Time-Constrained Bursts

Sup

p1W ≡ p(w | y,x) ∝ p(y | x, w) p0w

UnSup Sup . . . UnSup

pm−1
W ≡ p(w | x) ∝ p(F | x, w) pm−2

w

Sup Predict
p0W

N (0, σ2I)

pmW

Eyt ,Vyt

Yp1W p2W pm−1
W

Ts Tu

Tmax

Tr

 Selection via Posterior: Among BNN weights, select the one providing
‘Best’ results for the selected criteria

W ⋆ = argmin
j

[
max

i

∣∣gi(xt,Y·j)
∣∣] : Minimizes the maximum equality gap

8 / 15

Bounding the Error

P
{∣∣∣∣E[|e|]− 1

M

M∑
i=1

|ei|
∣∣∣∣ ⩽ ε

}
⩾ 1− δ

 Error bound ε in PCBs, provided by different concentration inequalities.

Hoeffding’s Empirical Bernstein Theoretical Bernstein

R

√
log(2/δ)

2M

√
2V̂e log(3/δ)

M + 3R log(3/δ)
M

√
2Ve log(1/δ)

M + 2R log(1/δ)
3M

 Hypothesis: αMPV ⩾ Ve = EM [VW [e]] + EW [VM [e]]︸ ︷︷ ︸
Total Variance in Error

⩾ V|e|

 Proposed Bound:√
2(2×MPV) log (1/δ)

M
+

2R log (1/δ)

3M

9 / 15

Matchup: Sandwich, BNN & DNN

Table: Comparative performance results for the ACOPF Problem for ‘case57’ with 512
labeled training samples, 2048 unlabeled samples, and Tmax = 600 sec.

Method Gap% Max Eq. Mean Eq. Max Ineq. Mean Ineq.
Sandwich BNN SvP (Ours) 0.928 0.027 0.006 0.000 0.000
Sandwich BNN (Ours) 0.964 0.045 0.005 0.000 0.000
Supervised BNN SvP (Ours) 3.195 0.083 0.011 0.000 0.000
Supervised BNN (Ours) 3.255 0.130 0.011 0.000 0.000
Näıve MAE 4.029 0.518 0.057 0.000 0.000
Näıve MSE 3.297 0.541 0.075 0.000 0.000
MAE + Penalty 3.918 0.370 0.037 0.000 0.000
MSE + Penalty 3.748 0.298 0.039 0.000 0.000
LD + MAE 3.709 0.221 0.033 0.000 0.000

10 / 15

Matchup: Sandwich, BNN & DNN

Table: Comparative performance results for the ACOPF Problem for ‘case118’ with 512
labeled training samples, 2048 unlabeled samples, and Tmax = 600 sec.

Method Gap% Max Eq. Mean Eq. Max Ineq. Mean Ineq.
Sandwich BNN SvP (Ours) 1.484 0.089 0.018 0.008 0.000
Sandwich BNN (Ours) 1.485 0.100 0.016 0.008 0.000
Supervised BNN SvP (Ours) 1.568 0.147 0.022 0.013 0.000
Supervised BNN (Ours) 1.567 0.205 0.020 0.013 0.000
Näıve MAE 1.638 2.166 0.187 0.000 0.000
Näıve MSE 1.622 3.780 0.242 0.000 0.000
MAE + Penalty 1.577 1.463 0.102 0.000 0.000
MSE + Penalty 1.563 2.637 0.125 0.000 0.000
LD + MAE 1.565 1.284 0.083 0.000 0.000

11 / 15

More Results: Larger Systems

Table: Comparative performance results for the ACOPF Problem for case500 with 512
labeled training samples, 2048 unlabeled samples and Tmax = 600 sec.

Method Gap% Max Eq. Mean Eq. Max Ineq. Mean Ineq.
Sandwich BNN SvP (Ours) 2.009 0.770 0.066 0.190 0.000
Sandwich BNN (Ours) 2.002 0.781 0.056 0.191 0.000
Supervised BNN SvP (Ours) 1.191 2.204 0.088 0.141 0.000
Supervised BNN (Ours) 1.191 2.401 0.072 0.140 0.000
Näıve MAE 1.208 20.818 0.905 0.000 0.000
Näıve MSE 1.201 24.089 1.031 0.000 0.000
MAE + Penalty 1.205 11.833 0.580 0.000 0.000
MSE + Penalty 1.215 10.314 0.475 0.000 0.000
LD + MAE 1.279 11.166 0.532 0.000 0.000

12 / 15

Hypothesis Testing

0 1 2 3
Total Variance in Error (log) 1e 3

0

1

2

3

M
PV

 x
 2

 (l
og

)

1e 3 Case500

0.0 1.5 3.0 4.5
Total Variance in Error (log) 1e 4

0.0

1.5

3.0

4.5

M
PV

 x
 2

 (l
og

)

1e 4 Case118

0.0 0.8 1.6
Total Variance in Error (log) 1e 3

0.0

0.8

1.6

M
PV

 x
 2

 (l
og

)

1e 3 Case57
Sandwich BNN Supervised BNN

Figure: Empirical study comparing total variance in error V̂e with 2×MPV across
different cases of ACOPF and the proposed learning mechanisms.

13 / 15

Probabilistic Bounds

0 10 20 30 40 50
Bus Index

10 5

10 4

10 3

10 2

Er
ro

rs
 P

U
(lo

g)
Voltage Magnitude

0 10 20 30 40 50
Bus Index

10 4

10 2

Er
ro

rs
 R

ad
. (

lo
g)

Voltage Angle

Empirical Expected Error Theoretical Bernsteins (2 x MPV) Empirical Bernsteins Hoeffdings

0 20 40 60 80 100 120
Bus Index

10 5

10 3

10 1

Er
ro

rs
 P

U
(lo

g)

Voltage Magnitude

0 20 40 60 80 100 120
Bus Index

10 5

10 3

10 1

Er
ro

rs
 R

ad
. (

lo
g)

Voltage Angle

 Theoretical Bernstein bounds with 2 ×MPV are tightest.

We consider δ = 0.95 and 1000 out-of-sample testing data points i.e. M = 1000
14 / 15

Conclusions & Future Questions

 BNNs outperform DNNs in low data and low training time settings

 Sandwich BNNs generally better at enforcing feasibility compared to
Supervised BNNs

? Will GPUs make BNNs better, as they are harder to train?

? How to put cost function in unsupervised stage?

? What if DNN is used for unsupervised stage while BNN for supervised?

Write to me at pareek@ee.iitr.ac.in

Related Papers:

▶ P. Pareek, K. Sundar, D. Deka, & S. Misra (2024) “Optimization Proxies using Limited
Labeled Data and Training Time–A Semi-Supervised Bayesian Neural Network Approach”,
ArXiv:2410.03085.

▶ P. Pareek, K. Sundar, D. Deka, & S. Misra (2024) “Learning from Less: Bayesian Neural
Networks for Optimization Proxy using Limited Labeled Data”, NeurIPS 2024 Workshop on
Bayesian Decision-making and Uncertainty.

15 / 15

