Learning From Less Optimization Proxies under Time-Sample Constrained Settings

> Parikshit Pareek IIT Roorkee & T-5, LANL

Work done with Kaarthik, Deep and Sidhant

pareek@ee.iitr.ac.in

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○<

$$T_{Total} = T_{Data} + T_{Training} + T_{Prediction}$$

T_{Data}	$T_{Training}$	$T_{Prediction}$
Training Data Generation	Hyperparameter Optimization	Prediction Time
Validation Data Generation	Variational Inference	Validation Time

The Problem

How to Overcome Constraints on Training Time and Data?

✤ Optimization proxies must be trained efficiently within strict time constraints

- » Operational time constraints
- \gg Speed requirements for large-scale simulations

✤ Optimization proxies must be trained efficiently within strict time constraints

- » Operational time constraints
- \gg Speed requirements for large-scale simulations

▶ Obtaining training data is time-consuming or not feasible

- \gg Large-scale problem solutions produce only a single data point
- » Limited data related to rare or less probable events

✤ Optimization proxies must be trained efficiently within strict time constraints

- » Operational time constraints
- » Speed requirements for large-scale simulations

▶ Obtaining training data is time-consuming or not feasible

- \gg Large-scale problem solutions produce only a single data point
- \gg Limited data related to rare or less probable events

▶ Physical systems require 'some' guarantees on learning quality

 \gg Vanilla statistical validation demands a large validation dataset

Hoeffding's Inequality: $arepsilon \propto 1/\sqrt{N}$

Current DNN Proxies: All Permutations & Combinations

- \clubsuit Supervised DNN models with different architectures and settings
 - » Supervised Loss: Mean Square Error (MSE), Mean Absolute Error (MAE)
 - » Supervised Losses + Penalty : $MSE/MAE + \lambda[Constraint Violation]$
 - » Partial Predict + Power Flow: Predict P_g, Q_g & solve power flow for $|V|, \theta$

✤ Semi-Supervised DNN models

- » Use Power Flow Jacobian during training
- » Use Power Flow Jacobian at correction stage
- \gg Last layer- sigmoid based output clipping for correction
- ▶ Self-Supervised/Unsupervised DNN models
 - >> Loss Function: Cost + λ [Constraint Violation]
 - \gg Update weights λ in primal-dual fashion

Issues

Large Labeled Data, Large Training & Prediction Time,

▶ What are Bayesian Neural Networks (BNNs)?

- » BNNs treat weights as probability distributions instead of fixed values
- » Provide a probability distribution over outputs instead of single deterministic predictions.

✤ What are Bayesian Neural Networks (BNNs)?

- \gg BNNs treat weights as probability distributions instead of fixed values
- » Provide a probability distribution over outputs instead of single deterministic predictions.

✤ Why are BNNs better than DNNs for low data?

- » Incorporate **prior knowledge** and effectively model uncertainty in data and parameters.
- » Prevent overfitting: Weight Distribution, Regularization via Priors, Posterior Averaging

✤ What are Bayesian Neural Networks (BNNs)?

- » BNNs treat weights as probability distributions instead of fixed values
- » Provide a probability distribution over outputs instead of single deterministic predictions.

✤ Why are BNNs better than DNNs for low data?

- » Incorporate **prior knowledge** and effectively model uncertainty in data and parameters.
- » Prevent overfitting: Weight Distribution, Regularization via Priors, Posterior Averaging

✤ Advantages over DNNs:

- \gg Separates two types of uncertainty:
 - **Epistemic uncertainty**: Uncertainty in model parameters p(w|D).
 - Aleatoric uncertainty: Noise inherent in data p(y|x, w).
- Assigns high uncertainty to points far from the training set, avoiding overconfident predictions.

More on BNN

✤ How do BNNs work?

» Use Bayes' theorem to update weight distributions:

$$p(w|D) = \frac{p(D|w) p(w)}{p(D)}$$
 w: weights, D: data, $p(w)$: prior, $p(D|w)$: likelihood.

✤ Core Equations of BNNs:

» Prediction distribution:

$$p(y|x, D) = \int p(y|x, w) p(w|D) \, dw$$

- » Approximated using Monte Carlo or variational techniques.
- » Training a BNN is slower than Training a DNN

Standard Constrained Optimization Problem

$$\min_{\mathbf{y}} \quad c(\mathbf{y}) \tag{1a}$$

s.t.
$$g(\mathbf{x}, \mathbf{y}) = 0$$
 (1b)

$$h(\mathbf{x}, \mathbf{y}) \leqslant 0 \tag{1c}$$

 \mathbf{x} is given (input vector)

▶ Standard Constrained Optimization Problem

$$\min_{\mathbf{y}} \quad c(\mathbf{y}) \tag{1a}$$

s.t.
$$g(\mathbf{x}, \mathbf{y}) = 0$$
 (1b)

$$h(\mathbf{x}, \mathbf{y}) \leqslant 0 \tag{1c}$$

 \mathbf{x} is given (input vector)

Iarget:

Develop a Fast Evaluating proxy such that: $\mathbf{y} = \mathcal{M}_w(\mathbf{x})$

✤ Standard Constrained Optimization Problem

$$\min_{\mathbf{y}} \quad c(\mathbf{y}) \tag{1a}$$

s.t.
$$g(\mathbf{x}, \mathbf{y}) = 0$$
 (1b)

$$h(\mathbf{x}, \mathbf{y}) \leqslant 0 \tag{1c}$$

 \mathbf{x} is given (input vector)

✤ Target:

Develop a Fast Evaluating proxy such that: $\mathbf{y} = \mathcal{M}_w(\mathbf{x})$

✤ Motivation:

Training-validation data collection is **Expensive** & need to **Train** $\mathcal{M}_w(\mathbf{x})$ **Fast**

✤ Standard Constrained Optimization Problem

$$\min_{\mathbf{y}} \quad c(\mathbf{y}) \tag{1a}$$

s.t.
$$g(\mathbf{x}, \mathbf{y}) = 0$$
 (1b)

$$h(\mathbf{x}, \mathbf{y}) \leqslant 0 \tag{1c}$$

 \mathbf{x} is given (input vector)

✤ Target:

Develop a Fast Evaluating proxy such that: $\mathbf{y} = \mathcal{M}_w(\mathbf{x})$

✤ Motivation:

Training-validation data collection is **Expensive** & need to **Train** $\mathcal{M}_w(\mathbf{x})$ **Fast**

✤ Idea:

Using large unlabeled dataset to enforce **Feasibility** & limited supervised dataset for **Optimality** + **Feasibility**

Feasibility Condition

$$\mathcal{F}(\mathbf{y}, \mathbf{x}) = \lambda_e \underbrace{\left\| g(\mathbf{x}, \mathbf{y}) \right\|^2}_{\text{Equality Gap}} + \lambda_i \underbrace{\left\| \text{ReLU}[h(\mathbf{x}, \mathbf{y})] \right\|^2}_{\text{Inequality Gap}}.$$

Feasibility Condition on Network Weights

Network weights should be such that, for any input, predicted output provides $\mathcal{F}(\mathbf{y},\mathbf{x})=0$

If input sampling is cheap, we can create an **Augmented Labeled Dataset** for **Free**

$$\mathcal{D}^f = \{(\mathbf{x}_j, \mathcal{F}(\cdot, \mathbf{x}) = 0)\}_{j=1}^M$$

(2)

Alternating Training Phases for BNNs in Time-Constrained Bursts

$$p_{W}^{1} \equiv p(w \mid \mathbf{y}, \mathbf{x}) \propto p(\mathbf{y} \mid \mathbf{x}, w) p_{w}^{0} \qquad p_{W}^{m-1} \equiv p(w \mid \mathbf{x}) \propto p(\mathcal{F} \mid \mathbf{x}, w) p_{w}^{m-2}$$

$$\xrightarrow{p_{W}^{0}} \underbrace{\underset{T_{s}}{\overset{\uparrow}{\underset{W_{t}}}} p_{W}^{1}}_{T_{s}} \underbrace{\underset{T_{u}}{\overset{U_{n}}{\underset{W_{t}}}} p_{W}^{2}}_{T_{u}} \underbrace{\underset{T_{r}}{\overset{f}{\underset{W_{t}}}} p_{W}^{m-1}}_{T_{r}} \underbrace{\underset{W_{t}}{\overset{p_{W}^{m-1}}{\underset{W_{t}}{\underset{W_{t}}}} p_{W}^{m}}_{T_{w}} \underbrace{\underset{W_{t}}{\overset{P_{W}^{m}}{\underset{W_{t}}{\underset{W_{W_{t}}{\underset{W_{W_{t}}{\underset{W_{W_{W_{W_{$$

✤ Selection via Posterior: Among BNN weights, select the one providing
 'Best' results for the selected criteria

$$W^{\star} = \arg\min_{j} \left[\max_{i} \left| g_{i}(\mathbf{x}^{t}, \mathbf{Y}_{\cdot j}) \right| \right]$$
: Minimizes the maximum equality gap

$$\mathbb{P}\left\{ \left| \mathbb{E}[|e|] - \frac{1}{M} \sum_{i=1}^{M} |e_i| \right| \leq \varepsilon \right\} \ge 1 - \delta$$

 \blacktriangleright Error bound ε in PCBs, provided by different concentration inequalities.

Hoeffding's Empirical Bernstein Theoretical Bernstein $R\sqrt{\frac{\log(2/\delta)}{2M}}$ $\sqrt{\frac{2\widehat{\mathbb{V}}_e \log(3/\delta)}{M}} + \frac{3R\log(3/\delta)}{M}$ $\sqrt{\frac{2\mathbb{V}_e \log(1/\delta)}{M}} + \frac{2R\log(1/\delta)}{3M}$ \bigstar Hypothesis: α MPV $\geqslant \mathbb{V}_e = \underbrace{\mathbb{E}_M \left[\mathbb{V}_W[e]\right] + \mathbb{E}_W \left[\mathbb{V}_M[e]\right]}_{\text{Total Variance in Error}} \geqslant \mathbb{V}_{|e|}$ \bigstar Proposed Bound:

$$\sqrt{\frac{2(2 \times \text{MPV})\log(1/\delta)}{M}} + \frac{2R\log(1/\delta)}{3M}$$

Table: Comparative performance results for the ACOPF Problem for 'case57' with 512 labeled training samples, 2048 unlabeled samples, and $T_{\text{max}} = 600$ sec.

Method	$\operatorname{Gap}\%$	Max Eq.	Mean Eq.	Max Ineq.	Mean Ineq.
Sandwich BNN SvP (Ours)	0.928	0.027	0.006	0.000	0.000
Sandwich BNN (Ours)	0.964	0.045	0.005	0.000	0.000
Supervised BNN SvP (Ours)	3.195	0.083	0.011	0.000	0.000
Supervised BNN (Ours)	3.255	0.130	0.011	0.000	0.000
Naïve MAE	4.029	0.518	0.057	0.000	0.000
Naïve MSE	3.297	0.541	0.075	0.000	0.000
MAE + Penalty	3.918	0.370	0.037	0.000	0.000
MSE + Penalty	3.748	0.298	0.039	0.000	0.000
LD + MAE	3.709	0.221	0.033	0.000	0.000

-

Table: Comparative performance results for the ACOPF Problem for 'case118' with 512 labeled training samples, 2048 unlabeled samples, and $T_{\text{max}} = 600$ sec.

Method	$\operatorname{Gap}\%$	Max Eq.	Mean Eq.	Max Ineq.	Mean Ineq.
Sandwich BNN SvP (Ours)	1.484	0.089	0.018	0.008	0.000
Sandwich BNN (Ours)	1.485	0.100	0.016	0.008	0.000
Supervised BNN SvP (Ours)	1.568	0.147	0.022	0.013	0.000
Supervised BNN (Ours)	1.567	0.205	0.020	0.013	0.000
Naïve MAE	1.638	2.166	0.187	0.000	0.000
Naïve MSE	1.622	3.780	0.242	0.000	0.000
MAE + Penalty	1.577	1.463	0.102	0.000	0.000
MSE + Penalty	1.563	2.637	0.125	0.000	0.000
LD + MAE	1.565	1.284	0.083	0.000	0.000

Table: Comparative performance results for the ACOPF Problem for **case500** with 512 labeled training samples, 2048 unlabeled samples and $T_{max} = 600$ sec.

Method	$\operatorname{Gap}\%$	Max Eq.	Mean Eq.	Max Ineq.	Mean Ineq.
Sandwich BNN SvP (Ours)	2.009	0.770	0.066	0.190	0.000
Sandwich BNN (Ours)	2.002	0.781	0.056	0.191	0.000
Supervised BNN SvP (Ours)	1.191	2.204	0.088	0.141	0.000
Supervised BNN (Ours)	1.191	2.401	0.072	0.140	0.000
Naïve MAE	1.208	20.818	0.905	0.000	0.000
Naïve MSE	1.201	24.089	1.031	0.000	0.000
MAE + Penalty	1.205	11.833	0.580	0.000	0.000
MSE + Penalty	1.215	10.314	0.475	0.000	0.000
LD + MAE	1.279	11.166	0.532	0.000	0.000

Figure: Empirical study comparing total variance in error $\widehat{\mathbb{V}}_e$ with 2 × MPV across different cases of ACOPF and the proposed learning mechanisms.

Probabilistic Bounds

▶ Theoretical Bernstein bounds with $2 \times MPV$ are tightest.

Conclusions & Future Questions

- \blacktriangleright BNNs outperform DNNs in low data and low training time settings
- ✤ Sandwich BNNs generally better at enforcing feasibility compared to Supervised BNNs
 - ? Will GPUs make BNNs better, as they are harder to train?
 - **?** How to put cost function in unsupervised stage?
 - ? What if DNN is used for unsupervised stage while BNN for supervised?

Write to me at pareek@ee.iitr.ac.in

Related Papers:

- P. Pareek, K. Sundar, D. Deka, & S. Misra (2024) "Optimization Proxies using Limited Labeled Data and Training Time–A Semi-Supervised Bayesian Neural Network Approach", ArXiv:2410.03085.
- P. Pareek, K. Sundar, D. Deka, & S. Misra (2024) "Learning from Less: Bayesian Neural Networks for Optimization Proxy using Limited Labeled Data", NeurIPS 2024 Workshop on Bayesian Decision-making and Uncertainty.