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Where are the other parameters like condition number and sparsity?

Complete Solve Complexity of HHL 𝒪(s2 κ2 log N ε−1 )

HHL does scale better in terms of System Size, but scales worse in terms of Condition 
Number (& Sparsity)

Condition number is scaling worse than  

Algorithms that manage condition number 
will be better for this application. 

N



Point #1 : 
During speedup analysis consider runtime complexity with respect 

to ALL Parameters 

Our Favorite Problem might not have so Favorable Parameters
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𝒪(Tb)

𝒪(N)

To Load Dimensional  vectorN− b

Amplitude Encoding

𝒪(log N)With Quantum RAM

So Optimistically   𝒪(Tb) ≡ 𝒪(log N)

State Prepration:
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J. van Apeldoorn, A. Cornelissen, A. Gilye ́n, and G. Nannicini, “Quantum tomography using state-preparation unitaries,” in Proceedings of the 2023 
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2023, pp. 1265–1318. 

|x⟩ = A−1 |b⟩ To perform quantum tomography to get 
bus angle vector estimate, we need multiple 

copies of  HHL solution . |x⟩

Θ(poly(N)/ε)How many copies ?

1.  How much effort to read ? 

2. How much to read ? 
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Point #2 : 

During speedup analysis consider End-to-End runtime complexity

Readout alone is enough to Kill any advantage in general Power 
Flow setting
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Comparative Picture

Current Quantum Linear Solving Algorithms offer No Advantage in 
solving Power Flow in Standard Formulations

Classical Scaling

Quantum Scaling
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s2 κ2
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Ok! Forget DC, What About AC Power Flow?

Newton Raphson Load Flow
Solving Linear Systems of Equations  
with Jacobian Matrix Multiple Times

𝒪(K Ns κ log(1/εc))
Conjugate GradientNumber of NRLF 

Iterations

We already saw that 
 One iteration of Linear System Solve is slower using Quantum! 

So….. 
As long as K is same for Quantum & Classical, We have Less Hopes!  †

 Note that exact Quantum Complexity will depends on how the proposed algorithm handles error propagation within Quantum. †
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Another Issue

Will need Adaptive Preconditioning

—  Jacobian’s Condition Number is Not Constant

Tamas Terlaky and his group from Lehigh University have some work on it, in the 
context of Interior Point Methods
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By the way! What best can be achieved by doing all of this?

𝒪(log(N) N
ε )

State Prepration 
Putting Problem into 
Quantum Computer

Readout 
Reading the Solution

Is All of This Worth it?  
Or 

Is it Watt We are Looking for? 

So……



Conclusion
End-to-End Complexity based Potential Quantum Speedup Analysis must 

be done for Your Favorite Problem…. 

….. Before starting to solve it.

pareek@ee.iitr.ac.in
arXiv:2402.08617

https://psquare-lab.github.io/
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If Need someone who asks Very Stupid Questions in your research 
group meetings related to an interesting problem on  

ML + Power or Quantum + Power 

Let me know at: pareek@ee.iitr.ac.in


