Demystifying Quantum Power Flow: Is It Fast?

Parikshit Pareek Assistant Professor Indian Institute of Technology Roorkee

Joint work with — Abhijith Jayakumar, Carleton Coffrin and Sidhant Misra at LANL LA-UR 24-28593

Grid Science Winter School Santa Fe, New Mexico, USA 9 January 2025

What is this talk about?

Potential Quantum Advantage

Target

Find Crossover Size (if exist) & Make this Graph

This talk is **NOT** about proposing a 'New' Quantum algorithm & I am **NOT** a Quantum Guy

Target

Find Crossover Size (if exist) & Make this Graph

My Favourite Problem: Power Flow

-
-
-
-
-
-

My Favourite Problem: Power Flow

My Favourite Problem: Power Flow

My Favourite Problem: Power Flow

So in DC Power Flow formulation we want to solve for voltage angles at each node of the system, with reference set to zero.

My Favourite Problem: Power Flow

So in DC Power Flow formulation we want to solve for voltage angles at each node of the system, with reference set to zero.

So where does Quantum fit in?

-
-
-
-
-
- -
	- - - -
-
-
-
-
-
-
-
-
- - -
		- -
		-
		-
		-
		- -
			-
			-
			-
- -
	-
	-
	-
- -
-
-
-
-
-
-
-
-
- -
-
-
-
-
- -
-
- -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

So where does Quantum fit in?

Conjugate Gradient (CG) for Linear System Solving which exploits sparsity of network, and terminates at selected precision

So where does Quantum fit in?

Conjugate Gradient (CG) for Linear System Solving which exploits sparsity of network, and terminates at selected precision

So where does Quantum fit in?

$$
\mathcal{O}(N \, s \, \sqrt{\kappa} \, \log(1/\varepsilon_c))
$$

Conjugate Gradient (CG) for Linear System Solving which exploits sparsity of network, and terminates at selected precision

So where does Quantum fit in?

$$
\frac{\mathcal{O}(N \ s \ \sqrt{\kappa} \ \log(1/\varepsilon_c))}{\text{System Size}}
$$

Conjugate Gradient (CG) for Linear System Solving which exploits sparsity of network, and terminates at selected precision

So where does Quantum fit in?

$$
\frac{\mathcal{O}(N \mid s \mid \sqrt{\kappa} \mid \log(1/\varepsilon_{c}))}{\text{Sparsity}}
$$

Conjugate Gradient (CG) for Linear System Solving which exploits sparsity of network, and terminates at selected precision

So where does Quantum fit in?

$\mathcal{O}(N \mid S \mid \sqrt{\kappa} \mid \log(1/\varepsilon_c))$		
System Size	5	Condition Number

Conjugate Gradient (CG) for Linear System Solving which exploits sparsity of network, and terminates at selected precision

So where does Quantum fit in?

Conjugate Gradient (CG) for Linear System Solving which exploits sparsity of network, and terminates at selected precision

So where does Quantum fit in?

Using Quantum linear system solving algorithms for DCPF

Quantum Power Flow Claim!

Solving DCPF using Harrow-Hassidim-Lloyd (HHL) algorithm will lead to **Exponential** speed up

Conjugate Gradient (CG) for Linear System Solving which exploits sparsity of network, and terminates at selected precision

So where does Quantum fit in?

Using Quantum linear system solving algorithms for DCPF

Quantum Power Flow Claim!

Solving DCPF using Harrow-Hassidim-Lloyd (HHL) algorithm will lead to **Exponential** speed up

(log *N*)

But there is something missing in $O(log N)$

-
-
-
-
-
-
-
- - - -
			-

But there is something missing in $O(log N)$

Where are the other parameters like condition number and sparsity?

But there is something missing in $O(log N)$ Where are the other parameters like condition number and sparsity?

Complete Solve Complexity of HHL \longrightarrow $\mathcal{O}(s^2 \kappa^2 \log N \epsilon^{-1})$

But there is something missing in $\mathcal{O}(\log N)$

Where are the other parameters like condition number and sparsity? **Complete Solve Complexity of HHL** \longrightarrow $\mathcal{O}(s^2 \kappa^2 \log N \epsilon^{-1})$

HHL does scale better in terms of **System Size**, but scales worse in terms of **Condition Number (**& Sparsity**)**

But there is something missing in $O(log N)$

Where are the other parameters like condition number and sparsity? **Complete Solve Complexity of HHL** \longrightarrow $\mathcal{O}(s^2 \kappa^2 \log N \epsilon^{-1})$

HHL does scale better in terms of **System Size**, but scales worse in terms of **Condition Number (**& Sparsity**)**

Scaling of condition number(k) as a function of buses (N) for the PGLib-OPF datasets

But there is something missing in $O(log N)$

Where are the other parameters like condition number and sparsity? **Complete Solve Complexity of HHL** \longrightarrow $\mathcal{O}(s^2 \kappa^2 \log N \epsilon^{-1})$

Algorithms that manage condition number will be better for this application.

HHL does scale better in terms of **System Size**, but scales worse in terms of **Condition Number (**& Sparsity**)**

Condition number is scaling worse than *N*

Point #1 :

During speedup analysis consider runtime complexity with respect to ALL Parameters

Our Favorite Problem might not have so Favorable Parameters

Overheads: Data Loading

Overheads: Data Loading

 $\text{CLASSICAL INPUT} \longrightarrow \text{CLASSICAL ALGORITHM} \longrightarrow \text{CLASSICAL OUTPUT}$

To Load *N*−Dimensional *b* vector

To Load *N*−Dimensional *b* vector

(*N*) Amplitude Encoding

With Quantum RAM \longrightarrow $\mathcal{O}(\log N)$

So Optimistically $\mathcal{O}(T_b) \equiv \mathcal{O}(\log N)$

- 1. How much effort in reading ?
- 2. How much to read ?

- 1. How much effort in reading ?
- 2. How much to read ?

- 1. How much effort in reading ?
- 2. How much to read ?

In Power Flow Problem we want to complete state of the system so

N−Dimensional vector need to be read

 $\mathbf{x} = A^{-1} \mathbf{b}$

- 1. How much effort in reading ?
- 2. How much to read ?

In Power Flow Problem we want to complete state of the system so

N−Dimensional vector need to be read

Reading amount will depend on **Your Favourite Problem's**

$$
\mathbf{x} = A^{-1}\mathbf{b}
$$

- 1. How much effort in reading ?
- 2. How much to read ?

In Power Flow Problem we want to complete state of the system so

N−Dimensional vector need to be read

$$
\mathbf{x} = A^{-1}\mathbf{b}
$$

Reading amount will depend on **Your Favourite Problem's — Your Favourite Formulation**

CLASSICAL INPUT $\xrightarrow{\text{STATE PREP}} | \text{INPUT} \rangle \xrightarrow{ \text{QUANTUM ALGORITHM}} | \text{OUTPUT} \rangle \xrightarrow{\text{READOUT}} \text{CLASSICAL OUTPUT}$

- 1. How much effort to read ?
- 2. How much to read ?

2. How much to read ?

2. How much to read ?

copies of HHL solution $|x\rangle$.

J. van Apeldoorn, A. Cornelissen, A. Gilye ́n, and G. Nannicini, "Quantum tomography using state-preparation unitaries," in *Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*. SIAM, 2023, pp. 1265–1318.

copies of HHL solution $|x\rangle$.

$$
\rightarrow \Theta(poly(N)/\varepsilon)
$$

2. How much to read ?

How many copies?

Complete Quantum Picture: End-to-End

Evaluating End-to-End Complexity of Solving Linear Power Flows using Quantum Linear System Solving Algorithms (HHL Family)

Complete Quantum Picture: End-to-End

Point #2 :

During speedup analysis consider End-to-End runtime complexity

Readout alone is enough to Kill any advantage in general Power Flow setting

with $\kappa = N^{\beta}$ $sN^{1+0.5\beta}\log(N)\log(1/\varepsilon)$ $s^2N^{1+2\beta}\log(N)(1/\varepsilon^2)$ $s^2 \beta N^{1+\beta} \log^4(N) (1/\varepsilon^2)$

I
Runtime Complexity O(.)

Current Quantum Linear Solving Algorithms offer **No Advantage** in solving Power Flow in Standard Formulations

What is needed for 'Potential' Speedup?

What is needed for 'Potential' Speedup? s^2 *κ*² *N* log(*N*)(1/*ε*²)

What is needed for 'Potential' Speedup? s^2 *κ*² *N* log(*N*)(1/*ε*²)

Reading Partial Output/ Lower Readout

$s^2 \kappa_r^2 D \log(N) (1/\varepsilon^2)$ Readout level Reduced Condition-Number

Reading Partial Output/ Lower Readout

Pre-conditioning to Suppress Condition Number

System Size (N)

Reading Partial Output/ Lower Readout

Pre-conditioning to Suppress Condition Number

System Size (N)

Pre-Condition & Read Less

Reading Partial Output/ Lower Readout

Reduced Condition-Number

-
-
-
- -
	-

Newton Raphson Load Flow

-
-
-
- -
	-

$\mathcal{O}(K \ Ns\sqrt{\kappa} \log(1/\varepsilon))$

$\mathcal{O}(K \mid Ns\sqrt{\kappa} \log(1/\varepsilon_c))$ Number of NRLF **Iterations**

Newton Raphson Load Flow Solving Linear Systems of Equations with Jacobian Matrix Multiple Times

$O(K \ Ns\sqrt{\kappa \log(1/\varepsilon)})$ Number of NRLF

Conjugate Gradient Iterations

Number of NRLF \Box **Iterations**

Newton Raphson Load Flow \longrightarrow Solving Linear Systems of Equations with Jacobian Matrix Multiple Times

 $O(K \, Ns\sqrt{\kappa} \log(1/\varepsilon_c))$

We already saw that One iteration of Linear System Solve is slower using Quantum!

 $O(K \, Ns\sqrt{\kappa} \log(1/\varepsilon_c))$ Number of NRLF \Box Iterations We already saw that One iteration of Linear System Solve is slower using Quantum! So…. As long as K is same for Quantum & Classical, We have Less Hopes![†]

Ok! Forget DC, What About AC Power Flow?

 $O(K \, Ns\sqrt{\kappa} \log(1/\varepsilon_c))$ Number of NRLF \Box Iterations We already saw that One iteration of Linear System Solve is slower using Quantum! So….. As long as K is same for Quantum & Classical, We have Less Hopes![†]

 \dagger Note that exact Quantum Complexity will depends on how the proposed algorithm handles error propagation within Quantum.

Newton Raphson Load Flow Solving Linear Systems of Equations with Jacobian Matrix Multiple Times

Another Issue

-
-
-
- -
-
- - -

Another Issue — Jacobian's Condition Number is Not Constant

-
-
-
-
-
-
-
-

Another Issue — Jacobian's Condition Number is Not Constant

Will need Adaptive Preconditioning

Another Issue — Jacobian's Condition Number is Not Constant

Another Issue — Jacobian's Condition Number is Not Constant

Tamas Terlaky and his group from Lehigh University have some work on it, in the context of Interior Point Methods

Overall-What will it take to have Hope?

-
-
-
-
-
-
-
- -

Overall— What will it take to have Hope?

Overall— What will it take to have Hope?

Adaptive Preconditioning

(*log*(*N*)

N ε)

(*log*(*N*)

State Prepration Putting Problem into Quantum Computer

(*log*(*N*)

State Prepration Putting Problem into Quantum Computer

State Prepration Putting Problem into

Quantum Computer

(*log*(*N*) State Prepration

Putting Problem into Quantum Computer

 \mathbf{O}

Is All of This Worth it?

Is it Watt We are Looking for?

So……

Conclusion

..... Before starting to solve it.

Demystifying Quantum Power Flow: Unveiling the Limits of Practical Quantum Advantage

Parikshit Pareek, Abhijith Jayakumar, Carleton Coffrin, and Sidhant Misra Los Alamos National Laboratory, NM, USA. $pareck@lanl.gov;~abhijithj@lanl.gov;~cjc@lanl.gov,~sidhant@lanl.gov.$

pareek@ee.iitr.ac.in

https://psquare-lab.github.io/

End-to-End Complexity based Potential Quantum Speedup Analysis must be done for Your Favorite Problem....

arXiv:2402.08617

Indian Institute of Technology Roorkee Asia's Oldest Technical Institute— Founded in 1847

Indian Institute of Technology Roorkee **Asia's Oldest Technical** Institute-Founded in 1847

If Need someone who asks Very Stupid Questions in your research

Let me know at: pareek@ee.iitr.ac.in

group meetings related to an interesting problem on ML + Power or Quantum + Power

