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Time Equation for ML Models

Tdata + Ttrain + Tpredict

M(θi|Di) : Need Retraining for Each D.

Training Data

Model Weights
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The Mechanism: Bayes’ Theorem

The Mathematical Engine

P (Model|Data)︸ ︷︷ ︸
Posterior

∝ P (Data|Model)︸ ︷︷ ︸
Likelihood

×P (Model)︸ ︷︷ ︸
Prior
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Posterior: P(f|D)

The Prior The Posterior

(Random possibilities) (Constrained by Data)

Calculating the Posterior (Right Image) usually requires slow, complex math (integrals)– Difficult in Higher
Dimensions
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Comparison: Point Estimates vs. Bayesian Beliefs

1. Simple Linear Regression

Goal: Find the single best line (w, b) that minimizes error.

Result: A Point Estimate.

Flaw: Overconfident. It predicts a precise value even far from data where it
should be clueless.

2. Bayesian Inference

Goal: Find the distribution of all plausible lines given the data.

Result: A Posterior Distribution.

Benefit: Uncertainty Awareness. It knows when to say ”I don’t know”
(wide shaded region).
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Comparison: Point Estimates vs. Bayesian Beliefs
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No uncertainty info.

Simple Linear Regression
(Point Estimate)

Data
Best Fit Line
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Infinite possible answers,
weighted by probability.

Bayesian Inference
(Probability Distribution)

Posterior Mean
Uncertainty (95%)

Left: SLR gives one rigid answer. Right: Bayesian Inference captures the ”cone of uncertainty,” growing wider where data is scarce.
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Bayesian Inference: Updating Beliefs

The Core Philosophy

In Bayesian statistics, parameters are not fixed numbers;
they are distributions.

We start with a Prior: A broad assumption (“Anything is
possible”).

We observe Data (Likelihood).

We update to a Posterior: A sharper, more confident
belief.

The Example: Is this coin biased?

Start: I know nothing. It could be fair or biased.

Observation: I flip it 10 times, get 9 Heads.

Result: I am now fairly sure it favors Heads.
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Step 1: The Prior (Zero Knowledge)

State 1: Maximum Uncertainty
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Step 2: Likelihood (10 Flips: 9H, 1T)

State 2: Learning begins...
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Step 3: Posterior (100 Flips: 90H, 10T)

State 3: Strong Belief formed!
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Bayesian Inference: Updating Beliefs

The Core Philosophy

In Bayesian statistics, parameters are not fixed numbers;
they are distributions.

We start with a Prior: A broad assumption (“Anything is
possible”).

We observe Data (Likelihood).

We update to a Posterior: A sharper, more confident
belief.

The Example: Is this coin biased?

Start: I know nothing. It could be fair or biased.

Observation: I flip it 10 times, get 9 Heads.
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Bayesian Update: Evolution of Belief
Prior (0 Flips)
Posterior (10 Flips: 9H, 1T)
Posterior (100 Flips: 90H, 10T)
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Prior-Data Fitted Networks (PFNs)

Goal: Perform Bayesian Inference in a single forward pass.

Why? Bayesian inference is slow, and repeated retraining makes the computational cost
prohibitive

How? Learn to approximate the Posterior Predictive Distribution (PPD) p(y|x,D)

Amortized Bayesian Inference

Given a new dataset Dcontext and query point xtest, it outputs
qθ⋆(ytest | xtest,Dcontext) ≈ p(ytest | xtest,Dcontext)

in a single forward pass, where θ⋆ are the optimal PFN parameters.
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The Core Idea: Learning from Priors

What is a PFN?

PFNs are not trained on your target dataset (like ImageNet or Power Grid data).

They are Meta-Learners trained on Priors

The ”Prior” Definition

A mathematical recipe that generates infinite synthetic datasets (e.g., Gaussian Processes).

The PFN learns the statistical behavior of this prior, not specific data points.
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The 'Prior': Infinite Synthetic Functions
Prior Sample 1
Prior Sample 2
Prior Sample 3

The model observes millions of random functions
during training, effectively memorizing how to
interpolate data.
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The Core Idea: Learning from Priors

What is a PFN?
PFNs are not trained on your target dataset (like ImageNet or Power Grid data).
They are Meta-Learners trained on Priors

The ”Prior” Definition
A mathematical recipe that generates infinite synthetic datasets (e.g., Gaussian Processes).
The PFN learns the statistical behavior of this prior, not specific data points.

Example: GP Prior Generator

def get batch():

# 1. Sample Physics

ℓ ∼ Uniform(0.1, 2.0)
kernel = RBF(lengthscale=ℓ)

# 2. Sample Data

X = rand(N,D)
y ∼ MultivariateNormal(0,K(X))

return X, y
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A Menagerie of Priors: What can we model?

Since the PFN learns to approximate the Bayesian Posterior of the generator, changing the generator
changes the inference engine.

Gaussian Process (GP) Priors

Generator: Sample kernel hyperparameters (ℓ, σf , σn) → Sample GP.
Result: A neural network that mimics exact GP inference but 80x faster.

Bayesian Neural Network (BNN) Priors

Generator: Sample MLP weights W ∼ N (0, I).
Result: PFN approximates the complex weight-space posterior of a BNN.

Structural Causal Models (TabPFN)

Generator: Complex causal graphs, sparse interactions, non-linear activations.
Result: A foundation model for tabular data that beats XGBoost on small datasets.
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Why Prior Selection Matters: Inductive Bias

The ”No Free Lunch” Theorem: No model works best on all data.
The PFN Solution: Embed the correct Inductive Bias via the Prior.

Input Space

GP Prior (RBF)
Inductive Bias: Smoothness

Input Space

Step Function Prior
Inductive Bias: Discontinuities

Input Space

BNN Prior (MLP)
Inductive Bias: Compositionality

If you train on this...
Model assumes world is smooth (Power

Systems).

If you train on this...
Model assumes world has jumps (Digital

Logic).

If you train on this...
Model assumes world is compositional.
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PFN Idea
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4. The Inference Engine: Attention as Aggregation

How PFNs ”Think”

The model does not use fixed weights. It
uses In-Context Learning.

The Attention Mechanism acts as a
learned similarity kernel.

The Calculation For a query x?, prediction ŷ
is a weighted sum:

ŷ ≈
N∑
i=1

αi(x?, xi)︸ ︷︷ ︸
Similarity

· yi︸︷︷︸
Value

High αi: Context is close/relevant.

Low αi: Context is ignored.
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Visualizing Attention: The model assigns higher weights (thicker lines) to context points closer to the

query, effectively ”interpolating” the smooth underlying function.
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PFN: Training & Inference

Sample prior datasets D(i) ∼ p(D)

D(1) = D
(1)
train ∪ {(x(1)

test, y
(1)
test)}

...

D(K) = D
(K)
train ∪ {(x(K)

test, y
(K)
test)}

Train the PFN by minimizing

−
∑K

i=1 log qθ(y
(i)
test|x

(i)
test, D

(i)
train)

Actual context dataset & test input
(Dcontext, xtest) qθ∗(ytest|xtest, Dcontext) ≈ p(ytest|xtest, Dcontext)

PFN with parameters θ∗

Samuel Müller, Noah Hollmann, et.al “Transformers can do bayesian inference”. ICLR 2022.
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One + Two Questions

Scalability

Scalability: Can PFNs perform GP-style inference for 50D regression?

No - standard PFNs don’t scale beyond ∼10D

Attention Encoding: Localization

Why is everyone encoding x+ y in PFNs? How does this affect localization?
Localization: Nearby points provide more info about the value at an unknown point

than distant ones.

Backbone vs Attention

Are transformers all we need, or can PFNs also be built using CNNs etc.?
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Main Idea: Decouple Input and Output

Vanilla Attention

joint embedding

zi = ϕx(xi) + ϕy(yi)

Q = Wqz K = Wkz V = Wvz

H = softmax

(
Q(z)K(z)⊤

√
dk

)
V (z)

Decoupled-Value Attention (DVA)

input encoder

ϕx(xi)

value encoder

ϕy(yi)

Q = Wqϕx(x) K = Wkϕx(x) V = Wvϕy(y)

H = softmax

(
Q(x)K(x)⊤

√
dk

)
V (y)

Mixing Input & Output Keeping Input & Output Separate
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Theorem: Enforcing Localization

Theoretical Result

For DVA with linear embeddings, the attention weight αi(x⋆) (for a test input x⋆) assigned to a context
point xi is proportional to a Mahalanobis RBF Kernel:

αi(x⋆) ∝ exp

(
− 1

2τ
∥(x⋆ − xi)∥2A

)

Implication:

As the distance ∥x⋆ − xi∥ increases, the attention weight decays exponentially.

This mathematically forces the Model to behave like a GP Kernel: localization.

This holds true for any backbone architecture.

∥u∥2
A = uTAu
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Empirical Evidence: 10D Input Space

Does the theory hold in practice? We look at the attention weights in a 10D task.

Vanilla Attention

No Localization
Weights are flat/uniform.

The model fails to localize inputs.

DVA (Ours)

Exponential Decay
Weights drop as distance increases.

(Matches Theorem 1)
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DVA Outperforms VA: Scale and Error
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Decoupling Helps with Linear Attention Too
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Attention Agnostic: RNN/LSTM Results
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With DVA, PFN training performance is nearly identical across backbones
: CNN, RNN, LSTM, Transformer.
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64D Power-Flow Learning

Model: IEEE 33-bus AC power flow (64D inputs: 32 real + 32 reactive loads) → 32 bus voltages.

Exact GP (per-bus) yields lowest MSE/MAE but is slow for real-time (needs 32 GPs).

CNN+DVA and Transformer+DVA PFNs trade small accuracy loss (MAE ∼ 10−3) for ∼ 80×
faster inference.
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The PPD of Power Flow
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Figure: Comparing the PPD for three distinct samples for (Top) Bus 18. (Bottom) Bus 33
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100D is Possible Too
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Summary & Takeaways

Decoupled-Value Attention: A specialized attention rule that preserves input locality and mirrors
GP inference.

Bias Reduction: DVA cuts PFN bias by > 50% in high-D tasks (5D, 10D) compared to vanilla
attention.

Attention ≫ Backbone: CNN/RNN/LSTM PFNs with DVA perform on par with Transformers,
despite far fewer parameters.

Scaling to 64D: DVA-enabled PFNs successfully learn 64D physical equations at ∼ 80× GP speed.

Big Question

What if we could make a PFN which works for all ND GP Regressions?
A Foundation Model for Regression
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Best Part of The Work!

My Coauthors are Third Year UG Students @IITR!

Kaustubh Sharma
B.Tech Electrical Engg.
kaustubh202.github.io

Lab Website

Simardeep Singh
B.Tech Metallurgical Engg.
linkedin.com/in/simar7220

Full Pre-Print

Funding Support

Faculty Initiation Grant

PM Early Career Research Grant-2025
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Join Our Team: PhD Openings Available!

We are looking for motivated PhD candidates to join us in July 2026!

3 ML for Engineering
Developing robust Machine Learning models for

physical systems.

Physics-Informed Machine Learning

Surrogate Modeling (PFNs, GPs)

High-Dimensional Uncertainty Quantification

AI Agents for Engineering
Building autonomous agents for complex engineering

tasks.

Reasoning & Decision Making

LLMs for Scientific Discovery

Control & Optimization Agents

Interested?
Send your CV and a brief statement of interest to:

pareek@ee.iitr.ac.in

� https://psquare-lab.github.io
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