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What this talk is about? And what not?

Basic Introduction of Quantum Computing without Requiring Physics

Knowledge

A Lot of Linear Algebra & Notations!

Not about how to solve your favorite problems using Quantum

Computers

Not an expert talk on all things Quantum Computing
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Two Part Talk:
I. Basics of Quantum Computing
II. Demystifying Quantum Power Flow



Part I: Basics of Quantum Computing



Quantum Computing

What is Quantum Computing?

▶ Computation and information processing based on quantum mechanics

principles.

▶ Contrasts with traditional methods reliant on classical physics.

Foundations of Quantum Mechanics

▶ Describes nature at its most fundamental level.

▶ Developed in the early 20th century to explain subatomic particle behavior.

Success and Impact

▶ Underpins fields like Quantum Field Theory and Quantum Chromodynamics.

▶ Explains microscopic physical phenomena with exceptional accuracy.
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Origin of Quantum Computing: A Vision from Feynman

▶ Feynman’s Pivotal Question (1981):

“Can probabilistic computers simulate quantum mechanics?”
His conclusion: NO!

▶ Feynman’s Insight:
‘“. . . Nature isn’t classical, damnit, and if you want to
make a simulation of nature, you’d better make it quan-
tum mechanical.
By golly, it’s a wonderful problem, because it doesn’t look
so easy.”

▶ The Birth of Quantum Computing:

• Inspired by Feynman and contributions from David Deutsch,
Paul Benioff, and Yuri Manin.

• Introduced the concept of computation fundamentally based on
quantum mechanics.

Figure 1: Richard Feynman’s
ID Card Photo at Los Alamos
National Lab, 1943
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Claim: Quantum computers solve things by trying

every possibility at once.

MYTH

Fact: Quantum computers can solve certain types of

problems faster by carefully leveraging quantum

effects such as entanglement, interference,

superposition....

Also, There is The Measurement Issue!
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Quantum Computers are Here!

Figure 2: Domain of Science - Dominic Walliman
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The Mathematics of Gate-Based Quantum Computing

Most important point This introduction is mostly

about Notation!

The gate model of quantum computing is just linear

algebra over complex numbers with A LOT of special

notations!
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Brief Refresher on Complex Numbers

A complex number has two parts:

▶ “Real” part: Along the x-axis

▶ “Imaginary” part: Along the y-axis

Can be represented as a magnitude r and an
angle ϕ.

Two important operations:

▶ Complex Conjugate: Z∗ = x− yi

▶ Conjugate Transpose: A∗, AT , A†, or AH

Re

Im

O

z = x+ yi

r

x

y

φ

Z = x+ yi = r∠φ
Z∗ = x− yi = r∠− φ

Quantum physics is made of waves =⇒ Has amplitude & angle

=⇒ Complex number are suitable for representation.

https://en.wikipedia.org/wiki/Complex number https://en.wikipedia.org/wiki/Conjugate transpose
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The Kronecker Product ⊗ (a.k.a. Tensor Product)

▶ A recursive matrix operation.
▶ Efficiently handles exponentially large structures.

u⊗v =

u1u2
u3

⊗

(
v1
v2

)
=



u1v1
u1v2
u2v1
u2v2
u3v1
u3v2


A⊗B =


a11B · · · a1nB
...

. . .
...

am1B · · · amnB


Example:

(
1 2
3 4

)
⊗

(
0 5
6 7

)
=


1

(
0 5
6 7

)
2

(
0 5
6 7

)

3

(
0 5
6 7

)
4

(
0 5
6 7

)
 =


0 5 0 10
6 7 12 14
0 15 0 20
18 21 24 28


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Practice: Kronecker Product ⊗

Given the following matrices:

A =

(
1 3
2 4

)
, B =

(
0 5
6 7

)
,

calculate the Kronecker product A⊗B.
Class Question: Can anyone tell what the first block (a11B) in the top-left corner will
look like? (

? ?
? ?

)
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A =

(
1 3
2 4

)

B =

(
0 5
6 7

)

▶ a11 = 1: 1 ·B =

(
0 5
6 7

)

▶ a12 = 3: 3 ·B =

(
0 15
18 21

)

▶ a21 = 2: 2 ·B =

(
0 10
12 14

)

▶ a22 = 4: 4 ·B =

(
0 20
24 28

)
Final Answer: Combine into a 4x4 matrix

A⊗B =


0 5 0 15
6 7 18 21
0 10 0 20
12 14 24 28

 .

11



A =

(
1 3
2 4

)

B =

(
0 5
6 7

)

▶ a11 = 1: 1 ·B =

(
0 5
6 7

)

▶ a12 = 3: 3 ·B =

(
0 15
18 21

)

▶ a21 = 2: 2 ·B =

(
0 10
12 14

)

▶ a22 = 4: 4 ·B =

(
0 20
24 28

)
Final Answer: Combine into a 4x4 matrix

A⊗B =


0 5 0 15
6 7 18 21
0 10 0 20
12 14 24 28

 .

11



A =

(
1 3
2 4

)

B =

(
0 5
6 7

)

▶ a11 = 1: 1 ·B =

(
0 5
6 7

)

▶ a12 = 3: 3 ·B =

(
0 15
18 21

)

▶ a21 = 2: 2 ·B =

(
0 10
12 14

)

▶ a22 = 4: 4 ·B =

(
0 20
24 28

)

Final Answer: Combine into a 4x4 matrix

A⊗B =


0 5 0 15
6 7 18 21
0 10 0 20
12 14 24 28

 .

11



A =

(
1 3
2 4

)

B =

(
0 5
6 7

)

▶ a11 = 1: 1 ·B =

(
0 5
6 7

)

▶ a12 = 3: 3 ·B =

(
0 15
18 21

)

▶ a21 = 2: 2 ·B =

(
0 10
12 14

)

▶ a22 = 4: 4 ·B =

(
0 20
24 28

)
Final Answer: Combine into a 4x4 matrix

A⊗B =


0 5 0 15
6 7 18 21
0 10 0 20
12 14 24 28

 .

11



Dirac Notation (BraKet) ⟨|⟩

▶ Given a complex Euclidean space S ≡ Cn:

|ψ⟩ ∈ S denotes a column vector.
⟨ψ| ∈ S denotes a row vector that is the conjugate transpose of |ψ⟩ ∈ S:

⟨ψ| = |ψ⟩†

▶ ⟨ψ| is called a bra.

▶ |ψ⟩ is called a ket

▶ A sequence of matrix operations (applied right to left) looks like:

⟨ψ2| . . . CBA |ψ1⟩ .

▶ What does this have to do with Quantum Computing?

Quantum computers work with large complex Euclidean spaces (Cn).
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What is a Gate-Based Quantum Computer?

▶ The quantum computer has a state (ψ) that is contained in a quantum register and
is initialized in a predefined way.

▶ The state evolves by applying operations (U) specified in advance in the form of an
algorithm.

▶ At the end of the computation, some information on the state of the quantum
register is obtained by means of a special operation, called a measurement.

Inputψ ψ̂OutputU

▶ There exists an alternative model of computation, called the adiabatic model. It is
equivalent to the circuit model [Aharonov et al., 2008].
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State of A Quantum Computer



The Standard Basis of One Qubit

▶ The Qubit’s state is a unit vector of 2 complex numbers (i.e., C2).

▶ The standard basis is |0⟩ for the first entry and |1⟩ for the second entry.
Standard Basis

|0⟩ =

(
1
0

)
, |1⟩ =

(
0
1

) Unit Vector Requirement

⟨ψ|ψ⟩ = 1

Two Qubit Example

▶ The quantum state space grows as (C2)⊗q, where q is the number of Qubits.

▶ For two Qubits, we have:

(C2)⊗2 = C2 ⊗ C2 = C4

with the following 4 basis elements: |00⟩ , |01⟩ , |10⟩ , |11⟩

Quantum state vector grows exponentially: 2#Qubits
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A Trick

How to write a 0, 1 string for a Qubit?

Example: |010⟩

▶ |010⟩ has 3-Qubit =⇒ (C2)⊗3 = C8 8-Dimensional Vector

▶ If 010 is in binary, decimal equivalent is 2

▶ Place ‘1’ at 2nd location of 8-Dimensional Vector with index starting from 0

|010⟩ = |0⟩ ⊗ |1⟩ ⊗ |0⟩ =



0
0
1
0
0
0
0
0


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Secret Sauce of Quantum: Superposition

▶ The quantum system is a linear combination of basis states

|ψ⟩ = α |0⟩+ β |1⟩

▶ α, β are coefficient of basis states & are complex number

▶ α and β represent probability of finding |0⟩ and |1⟩ respectively. Thus

α2 + β2 = 1

▶ Square because these are complex number and sum is one as they are probabilities

Very Important

Superposition has NO classical equivalent
Bits are always in basis state =⇒ String of 0s and 1s
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Secret Sauce of Quantum: Entanglement

▶ A quantum system state that cannot be expressed as the Kronecker product of
other states is an entangled state.

▶ Observed values of each Qubit (when measured) are correlated.

▶ Requires at least 2 Qubits.

“Bell Pair”
(a.k.a. maximally entangled state):

|ψ⟩ =

|00⟩
|01⟩
|10⟩
|11⟩


√
0.5
0.0
0.0√
0.5

 , ps =

|00⟩
|01⟩
|10⟩
|11⟩


0.5
0.0
0.0
0.5



There is No Setting of constants c1 to c8
such that the Kronecker product produces

the Bell state:

(
c1 + c2i
c3 + c4i

)
⊗

(
c5 + c6i
c7 + c8i

)
̸=


√
0.5 + 0.0i
0.0 + 0.0i
0.0 + 0.0i√
0.5 + 0.0i


Note: If you read “0” on Qubit 1, then you will also read “0” on Qubit 2.

17



Bit v/s Qubit

Source: https://www.qnulabs.com/blog/quantum-101-Qubit
18
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Reading a Quantum State

▶ When you “read” a Qubit, you get a basis state 0 or 1 (not the C2 state

vector!).

▶ The amplitudes of the Quantum State (ψ) determine the probability distribution
of the basis states that you will observe.

Probability Distribution ps = diagonal(|ψ⟩ ⟨ψ|)

|ψ⟩ = |0⟩
|1⟩

(√
0.5 + 0.0i√
0.5 + 0.0i

)
, ps =

|0⟩
|1⟩

(
0.5
0.5

)

|ψ⟩ = |0⟩
|1⟩

(
0.5 + 0.25i√
2/4 + 0.75i

)
, ps =?
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Step-by-Step: Calculating ps from |ψ⟩

|ψ⟩ = |0⟩
|1⟩

(
0.5 + 0.25i√

2
4 + 0.75i

)
.

Step 1: Find the Probability of Each Basis State (ps)
Square of the magnitude of the corresponding amplitude: ps = diagonal(|ψ⟩ ⟨ψ|).

Step 2: Compute the Magnitudes of Each Amplitude
For |0⟩: |0.5 + 0.25i|2 = (0.5)2 + (0.25)2 = 0.25 + 0.0625 = 0.3125 = 5

16 .

For |1⟩: |
√
2
4 + 0.75i|2 =

(√
2
4

)2
+ (0.75)2 = 2

16 + 0.5625 = 0.625 = 11
16 .

The probability distribution ps is:

ps =
|0⟩
|1⟩

(
5
16
11
16

)
.

The probabilities of measuring |0⟩ and |1⟩ are 5
16 and 11

16 , respectively.
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Reading a Quantum State
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vector!).
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Goal of a Quantum Algorithm:

▶ Put most of the state probability into the "right" basis vector

(e.g., optimal solution to a combinatorial problem).

▶ Then reading the solution out of the quantum computer is easy.
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Quantum Gates

▶ Quantum Operations (U) are called Gates.
• A square matrix of complex numbers applied to the quantum state (ψ).
• Theory of quantum mechanics requires these operations to be unitary.
• Given the state vector has size C2q , the gates have size C2q×2q , where q is the

number of Qubits.

▶ Unitary Property:
U †U = UU † = I

▶ Important Consequences:
Quantum operations are linear.
Quantum operations are reversible.

Note

While these properties may seem to be extremely restrictive, a quantum computer is
Turing-complete! [Deutsch1985]

=⇒ It can do whatever a classical computer can do, and more.
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Quantum Gates, One Qubit Example

U =

(
1 0
0 i

)
|ψ0⟩ =

(
0
−1

)

U |ψ0⟩ =

(
0
−i

)

UU |ψ0⟩ =

(
0
1

)

UUU |ψ0⟩ =

(
0
i

)

UUUU |ψ0⟩ =

(
0
−1

) ▶ Rotation shown in the
complex plane (z = x+ yi).

▶ r: Magnitude, ϕ: Phase.
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Quantum Computer Program

▶ Most commonly shown as a sequence
of one and two Qubit gates

▶ Scores are read from the left to right,
But written right to left

|ψ⟩ = U2|U1 |ϕ⟩

|ϕ⟩ |ψ⟩U1 U2

24



The Challenge of Quantum Computing

▶ What useful computations can you do with unitary transforms on exponentially
large matrices?

▶ Only a few great answers... So Far!

• Simulate Quantum Systems (solve Schrödinger Equation)
• Factor Integers (Shor’s Algorithm)
• Unstructured Search (Grover’s Algorithm)
• Solving Linear Systems of Equations (HHL)
• Simulating Large Collections of Oscillating Springs (arXiv:2303.13012)

An Excellent Resource: “Quantum Algorithm Implementations for Beginners”
ArXiv:1804.03719
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Questions on Part I?



Part II: Demystifying Quantum Power Flow
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