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Research Interests: P2-LAB

−︸ ︷︷ ︸
Power System Operations

Under Uncertainty

Machine Learning

y = M(x)

Optimization

min c(x)

s.t. g(x, y) ≤ 0

Learning-Embedded
Optimization

min c(x)

s.t. g(x,M(x)) ≤ 0
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Challenges in Power System Operations due to Characteristics of

Renewable Sources & Variable Loads

Network Congestion
Voltage Violations
Price Fluctuations
Spatial Variability

Control Issue

Power System Operator

Happy story on left, becoming a Challenge towards right

Technological Advancements

Infrastructure Upgrades

Optimal Operations

Non-parametric Uncertainty: Situation of unknown parameters of probability
distributions of random power injections
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Models & Methods need to follow
non-parametric approach for

handling uncertainty
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Problem and Context
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Stochastic Problem

Model

Stochastic
Model

Deterministic Problem

Problem of Risk Estimation & Uncertainty Quantification

What is the expected value of node voltage violation?

What are the chances of obtaining node voltage beyond operational limits?
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Problem and Context

Power Flow: =⇒ Si =
∑
j∈N

y†
ij(viv

†
i − viv

†
j )

Net Power Injection
Complex Voltage

Network Parameter

Power flow equation set allows to obtain the complex voltage values at each
network node, given the power injection at each node.

Given

Operating Conditions

Load Uncertainty Set

Want

Expected Violation (Risk)

Probability of Violation

• Time & Sample Complexity • Varying Operating Conditions
• Arbitrary Uncertainty Sets – Non-parametric Uncertainties
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Why to use ML for power flow learning?

Given

Operating Conditions

Load Uncertainty Set

Want

Expected Violation (Risk)

Probability of Violation

Statistical Estimation

How many Samples ?
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Why to use ML for power flow learning?

Given

Operating Conditions

Load Uncertainty Set

Want

Expected Violation (Risk)

Probability of Violation

Statistical Estimation

Hoeffding’s Inequality

For acceptable error ε = 2× 10−3 & 95% confidence, number of samples needed are

M ≥ 0.5 log(2/β)ε−2 ≥ 200, 258

=⇒
∣∣True Expected Violation − Estimated Expected Violation

∣∣ < 2× 10−3
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More so in limited time to quantify ‘operational risk’
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Why to use ML for power flow learning?

Given

Operating Conditions

Load Uncertainty Set

Want

Expected Violation (Risk)

Probability of Violation

Statistical Estimation

Hoeffding’s Inequality

For acceptable error ε = 2× 10−3 & 95% confidence, number of samples needed are

M ≥ 0.5 log(2/β)ε−2 ≥ 200, 258

Running Newton-Raphson load flow 200, 258 times is ‘challenging’

More so in limited time to quantify ‘operational risk’

Solution =⇒ A Fast Evaluating ML proxy of Power Flow
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How good an ML tool can be for risk estimation?

If NRLF-based statistical estimation have error εh, then same number of ML evaluations
will achieve

∣∣True Expected Violation − Estimated Expected Violation
∣∣

< Lεm(1− δ) +Mδ + εh
Lipschitz Constant Arbitrarily Large Number

ML Prediction Confidence

ML Prediction Error
NRLF Estimation Error

with confidence 1− β, under a condition.

Main Result

Performance using 200, 258 NRLFs ≡ Performance using 801, 029 ML Evaluations
Using Gaussian process (GP) model Lεm(1− δ) +Mδ + εh ≈ 2× εh

Condition: Probability of the absolute difference between true & predicted voltage (by
ML) being larger than εm is less than or equal to δ.

Proof follows from the fact that with ML performance condition allows to upper bound difference in true and

ML based estimation with Lεm(1 − δ) + Mδ
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Why Gaussian Process (GP) is suitable for Power Flow learning?

GP regression uses prior knowledge about a function along with data, to predict
unobserved values and quantifying prediction uncertainty.

– Provide performance guarantee without requiring ground truth solutions
– Has low training data requirement due to prior knowledge infusion

A Closed-form Power Flow Approximation Framework is

– Flexible =⇒ Non-linear forms with complexity-accuracy trade-off

– Easy to Evaluate =⇒ Faster numerical calculations

– Non-parametric =⇒ Works within a power injection range or hypercube

– Differentiable =⇒ Can be fed into optimization problems

– Interpretable =⇒ Should provide insights into physical system

Essentially an explicit expression of voltage as a function of power injection which
provides a probabilistic performance guarantee for risk estimation
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GP Working Idea: In Brief

Prior Knowledge: Smooth Function

k(xi, xj) = τ2 exp

{
−∥xi − xj∥22

2ℓ2

}

Predict unobserved values: Mean

Thickest Shade of Blue

Prediction uncertainty: Variance

Lighter blue – lower probability

Performance Guarantee†

P
{∣∣∣V (s)− [µ(s) + γσ(s)]

∣∣∣ ≥ εm
}
≤ δ(γ)

† Considering the power flow function is a GP.
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GP Assumption

The distribution of f(x⋆), f(x⋆⋆) and f(x⋆⋆⋆) for the three inputs x⋆, x⋆⋆ and x⋆⋆⋆,
conditional on the observed values f(x1), f(x2) and f(x3).

Andreas Lindholm et.al. “An introduction to Gaussian process regression” Department of Information

Technology, Uppsala University.

(P2-LAB, EE, IITR) 17 September @ NITUK 2025 pareek@ee.iitr.ac.in 9 / 25



CFPF Learning: Using Gaussian Process

CFPF Learning Mechanism

Training Set {S, V̂j}
Training
Subspace

CFPF Learning
Vj(s)

Kernel Selection

Prior Knowledge

Mean :E[f(s)] = Vj(s) = kT [K + σ2
ϵ I]

−1V̂j

Variance :σ2[f(s)] = k(s, s)− kT [K + σ2
ϵ I]

−1k

Training Data–
{
S, V̂j

}
; N Samples

Design Matrix– S = [s1 . . . si . . . sN ]

– si is i-th power injection vector

Target Vector– V̂j = [V 1
j . . . V N

j ]
Power Flow as a Function:

V̂j = f(s) + ϵ

Gaussian Process (GP) function view†

f(si) ∼ GP
(
0, k(si, sj)

)
Zero Mean Kernel Function

Optimize the kernel hyper-parameters
using log marginal likelihood

CFPF provides mean prediction of voltage and confidence in that prediction

† C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning. MIT press Cambridge, MA,

2006, vol. 2, no. 3.
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CFPF: Forms

Vj(s) =
[
k(s1, s) . . . k(sN , s)

]
αj

Training Data

Variable s = [p;q] Constant

How Do Forms Look Then?

Simple, Standard Forms

– Linear: v = As+ b – Quadratic: Vj(s) = sTMs+mT s+ r

More Complex but Accurate Forms

Vj(s) =

N∑
i=1

αj(i)β
i

where, βi = τ2 exp
(
−∥si − s∥2/2l2

)
: Gaussian Kernel

v : Node Voltage Vector;M : Sensitivity Matrix;m : Slope Vector;

s : Node Power Injection Vector

P. Pareek and H. D. Nguyen “A Framework for Analytical Power Flow Solution using Gaussian Process

Learning”, IEEE Trans. on Sustainable Energy, Vol.13 (1), Jan 2022.
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Performance of CFPF)

Subspace-wise Approximations & Non-Parametric
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Non-parametric Nature

Distribution Max. MAE (pu)
Normal 1.86E-05
Beta 2.39E-05

Laplace 2.29E-05
Mixed 1.74E-05

For 33-Bus System
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Use of Predictive Variance
For 56-Bus System

Differentiable Functions

Faster Numerical Evaluations

Model Interpretability via
Hyper-parameters

Independent from Network Type
Assumptions

P. Pareek, W. Yu and H. D. Nguyen “Optimal steady-state voltage control using Gaussian process learning”,

IEEE Trans. on Industrial Informatics, Vol.10 (7), Dec. 2020.
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Graph-Structured Kernel for Low Sample
Complexity CFPF Learning

Combining Physics and Intuition into GP
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Standard CFPF Learning: Limitations & Solutions

é Curse-of-Dimensionality

Complexity O(N3) with N training
samples; Systems ≤ 100-Bus

é Mesh Network Flows

Power injection-voltage relationship is
not direct; Higher order nonlinearity

é Limited Use

Full GP is restrictive to be used within
Bayesian Optimization

− Learn individual low-dimensional
sub-function & combine

Lower Curse-of-Dimensionality

− Capturing localized voltage-power
injection relationship will be easier

Suitable for Mesh Network Flows

− Low-dimensional GPs

Useful as surrogate in Bayesian
Optimization approach

An Ideal Situation Would be if

A high-dimensional voltage function is breakable into

low-dimensional sub-functions
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Additive Gaussian Processes
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Vj(s) = V 1
j (s1) + · · ·+ V m

j (sm)

≡ GP1

(
0,K1(s1, ·)

)
+ · · ·+ GPm

(
0,Km(sm, ·)

)
≡ Additive Gaussian Process
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Using Network-Structure to Achieve Additive GP Architecture

– Neighboring power injections have highly correlated effect on node voltages

– Effect of far away power injections is approximately equal to sum of individual
effects

kv(s
i, sj) =

|B|∑
b=1

kb(x
i
b,x

j
b)

Number of Nodes

Node Neighborhood Kernel
Neighborhood Aggregated Injection Vectors

Power Injection Vectors

1

3

2

12

11

4

5

8

6

k1([s1; s2; s3], ·)

k2([s1; s2; s12], ·)

k3([s1; s3; s5; s12], ·)

k12([s2; s3; s4; s7; s11; s12; s16; s117], ·)

si = [pi; qi]

Idea of vertex degree kernel construction

V1(s) = V11(x1) + · · ·+ V1|B|(x|B|)︸ ︷︷ ︸
Latent Node Voltage Functions

Target Node Voltage
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Active Learning: Lower Samples and Stopping Criteria

⋆ What: Learning by successively selecting the next training point ‘intelligently’

⋆ Why: To speed-up the learning process using unlabeled data i.e. only input data
needed =⇒ Low Sample Complexity =⇒ Less Power Flow Samples Needed

⋆ Concept: Next training point is the one which has maximum uncertainty in
underlying function

st+1 = argmax
s∈L

σt
f (s) → Only Function Evaluation

Provides a Proxy of Error � Stopping Criteria

Finding maximum variance point for
large-dimensional input space is hard
=⇒ Used mostly up to 20-dimensions

=⇒ Power systems have 100s of uncertain power
injections
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Network-swipe Active Learning

Variance: σ2[f(s)] =
|B|∑
b=1

kb(xb,xb)

︸ ︷︷ ︸
Constant

−
[ |B|∑

b=1

kb(Xb,xb)

]T

︸ ︷︷ ︸
Variable Vector

[K1 + · · · + K|B|]
−1︸ ︷︷ ︸

Constant Matrix

[ |B|∑
b=1

kb(Xb,xb)

]
︸ ︷︷ ︸
Variable Vector

Neighborhood Aggregated Injection Vectors xb’s have Overlap

1

32

12 5

[st+1
1 ; st+1

2 ; st+1
3 ]︸ ︷︷ ︸

x̂t+1
D1

= argmax
s1,s2,s3

σt
f

(
x̂D1 , x̂

t
D2...d

)

[st+1
5 ; st+1

12 ]︸ ︷︷ ︸
x̂t+1
D2

= argmax
s5,s12

σt
f

(
x̂t+1
D1

, x̂D2 , x̂
t
D3...d

)

· · · · · · · · · · · · · · · · · ·

Idea of network-swipe algorithm for AL.

P. Pareek, D. Deka, and S. Misra, “Graph-Structured Kernel Design for Power Flow Learning using Gaussian

Processes”. Arxiv.2308.07867
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Benchmarking Performance

Comparison of MAE
performance of

different methods for
118-Bus System

Table: Sample and Time Requirement for Risk Estimation in 500-Bus System

Node Samples Time(s) MAE (pu)×10−4 ∆VE× 10−4

4 67 - 70 28 - 30 3.11 ± 1.0 7.8 ± 0.5
268 102 - 109 53 - 58 4.68 ± 1.5 7.9 ± 0.2
320 72 - 76 30 - 33 4.66 ± 1.8 7.8 ± 0.4
321 70 - 77 30 - 33 4.96 ± 2.5 6.8 ± 0.5
- Mean evaluation time for 80100 samples is 33.2 sec

VDK-AL performs the risk estimation for any node in ≈ 120 sec
NRLF running time for 20025 samples is ≈ 4205 sec

Demonstrating the efficiency and low sample-complexity of AL-VDK &
Usefulness for power system operation under uncertainty
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Active Learning Performance for 1354-Bus System

– 100 samples are sufficient to learn a node voltage function with 2236 random power injections

1,354-Buses, 260 generators, & 1,991-lines.

Learning V5 for 1354-Bus system

Learning Method (Training Samples)
Full GP (200) VDK-GP (100) AL (100)

#PF 5000 2500 100

A random trial of active learning outperforms large number of passive learning attempts
Reduced time complexity of 25-50 times
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Application: Uncertainty Quantification (UQ)

Density functions for UQ in 118-Bus system for node voltages V22, V43 & V44

Voltage Violation probability(VP) =⇒ Probability of voltage value being out of limits

Voltage Violation probability (VP) estimation with various input distributions for 33-bus system

Distribution Normal Beta Laplace Mixed Comments
Max. Error in VP 0.0026 0.0028 0.0029 0.0009 |Monte-Carlo− Proposed|
Time Proposed (s) 1.04 + 1.66 + 0.70×4 = 5.5 Train Once; Evaluate Multiple
Time MCS (s) 105.2 103.6 100.4 108.3 Each Time 10000 PF Solving

Single model works for different distributions without the need for retraining
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Multi-Task Vertex Degree Kernel for
CFPF under Network Contingencies

Using ‘Available’ Knowledge to Reduce Training Sample Requirement
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CFPF Learning under Network Contingencies

Using VDK’s Ability to Accommodate Graph Structure & Existing Models to Learn CFPF for
‘New’ Network Topology
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Different sub-kernels of VDK for different topologies of a part of 118-Bus system.

Multi-Task Vertex Degree Kernel (MT-VDK)

kET
(si, sj) =

|B|∑
b=1

kb(x
i
b,x

j
b)︸ ︷︷ ︸

VDK on Target ET

+ ω

Ms∑
m=1

kEm (si, sj)︸ ︷︷ ︸
VDKs on Source Em’s

Number of Source Networks

Target Network Graph

WeightPower Injection Vectors
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More Results

Mean absolute error (MAE) densities for 24 node voltages for 38 different networks (N-1 contingencies).

Average error HALVED using MT-VDK-GP with same number of training sample

Probabilistic Voltage Envelopes (PVEs) for node voltages & 38 different structures of 30-Bus network

.
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Summary & Applications

Standard GP → VDK-GP & MT-VDK-GP → Network-Swipe AL

Application Specific Physics-inspired Kernels can help build Interpretable Learning Models in Low

Data Regimes.

Applications of Physics-inspired Power Flow Learning

All above mentioned works incorporate uncertainties in non-parametric manner
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Thank You!

Collaborators

• Dr. Sidhant Misra • Dr. Deepjyoti Deka • Dr. Abhijeet Jayakumar

• Prof. Lalit Goel • Prof. Ashu Verma • Dr. Carlton Coffrin

• Dr. L.P.M.I. Sampath • Prof. Hung D. Nguyen • Dr. Weng Yu
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Our group is currently working on
Machine Learning applications in Power Systems.

We have a few fully funded PhD positions
for motivated candidates interested in this area.

In case you know someone who might be a good fit,
please feel free to refer them to us.

More info:https://psquare-lab.github.io/people/
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ML Performance Bounds

Theorem

Given for an ML model P
{∣∣V (si)− V̂ (si)

∣∣ > εm
}
≤ δ with δ ∈ (0, 1) for any s ∈ S, and h(·) is

a Lipschitz continuous function with Lipschitz constant L, then the error in expected value
estimation using the ML model, for any s ∈ S, is bounded with probability greater than 1− β as∣∣E[hp(s)]− Ê[hm(s)]

∣∣ ≤ Lεm(1− δ) +Mδ + εh

where, β ∈ (0, 1), εh =
√

log (2/β)
2N

, M > |hp(s)− hm(s)|, and N number of samples.

h(·) violation function measuring distance from voltage limits
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Benchmarking

500 independent trials with 100 training samples; Testing: 1000 unique samples

V1 within ±10% hypercube for 500-Bus system.

Three Times Lower Sample Complexity

Proposed VDK-GP outperforms a 3-layer,
1000-neuron Deep Neural Network for
using 100 training samples in 118-Bus

system

V1 within ±10% hypercube for 118-Bus system.

50% Lower Error & 100 Times Confident Model

Node
MAE (pu)

Proposed DNN

1 5.22 × 10−5 1.89× 10−4

43 8.70 × 10−5 9.77× 10−4

117 2.26 × 10−5 9.05× 10−4

Accurate, loading independent power flow model with extremely low sample complexity
Useful for power system operation under uncertainty
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More Insights: Extrapolation & Depth Effect

Extrapolation of VDK-GP model trained within
±10% hypercube for 118-Bus system.

Effect of depth on learning quality of three
different voltage function in 500-Bus system.
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VDK-GP V/S MT-VDK-GP

Relative MAE variation with respect to training samples– defined as the ratio of MAE obtained
using MT-VDK-GP to VDK-GP.

Valleys in the relative error curves reflect the superior performance of the
proposed MT-VDK-GP at low data regimes.
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