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@ Machine Learning
y = M(x)
@ Optimization

min ¢(x)
st.g(x,y) <0

@ Learning-Embedded
Optimization

min ¢(x)
s.t.g(x, M(x)) <0
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Challenges in Power System Operations due to Characteristics of

Renewable Sources & Variable Loads

Network Congestion
Voltage Violations
Price Fluctuations Technological Advancements
Spatial Variability
Control Issue
Infrastructure Upgrades

) 3\ & i .
Variable u =S Optimal Operations
Uncertain —
- ﬁ“ Power System Operator

Happy story on left, becofﬂing a Challenge towards right

NON-PARAMETRIC UNCERTAINTY: Situation of unknown parameters of probability
distributions of random power injections

0.20
Normal
0.16 I\ —— Poisson
> Uniform
gorz ) = = Weibull Models & Methods need to follow
i .
20 non-parametric approach for
o0 handling uncertainty
0‘00-5 0 5 10 15 20 25 30

Injection (MW)
Distributions in 0-25 MW box
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Problem and Context

Deterministic Problem

Stochastic Problem

Stochastic p—
Model

Problem of Risk Estimation & Uncertainty Quantification
@ What is the expected value of node voltage violation?

@ What are the chances of obtaining node voltage beyond operational limits?
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Problem and Context

Net Power Injection

Complex Voltage

Power Flow: — éz = Z yjj(vivj - viv;)

JEN
Network Parameter

Power flow equation set allows to obtain the complex voltage values at each
network node, given the power injection at each node.

Given Want
Operating Conditions Expected Violation (Risk)
Load Uncertainty Set Probability of Violation

e Time & Sample Complexity e Varying Operating Conditions
e Arbitrary Uncertainty Sets — Non-parametric Uncertainties
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Why to use ML for power flow learning?

Given Want
Operating Conditions  Statistical Estimation , Expected Violation (Risk)

Load Uncertainty Set " Probability of Violation

How many Samples ?
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Why to use ML for power flow learning?

Given Want
Operating Conditions  Statistical Estimation , Expected Violation (Risk)

Load Uncertainty Set ’ Probability of Violation

Hoeffding's Inequality

For acceptable error £ = 2 x 1072 & 95% confidence, number of samples needed are

M > 0.5log(2/B8)e? > 200, 258

—> |True Expected Violation — Estimated Expected Violation| < 2 x 107°
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Why to use ML for power flow learning?

Given Want
Operating Conditions  Statistical Estimation  Expected Violation (Risk)
Load Uncertainty Set ’ Probability of Violation

Hoeffding's Inequality

For acceptable error ¢ = 2 x 1073 & 95% confidence, number of samples needed are

M > 0.5log(2/B)e % > 200,258

Running Newton-Raphson load flow 200, 258 times is challenging

More so in limited time to quantify ‘operational risk’
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Why to use ML for power flow learning?

Given Want
Operating Conditions  Statistical Estimation . Expected Violation (Risk)
Load Uncertainty Set ’ Probability of Violation

Hoeffding's Inequality

For acceptable error ¢ = 2 x 1073 & 95% confidence, number of samples needed are
M > 0.5log(2/B)e % > 200,258

Running Newton-Raphson load flow 200, 258 times is ‘challenging’

More so in limited time to quantify ‘operational risk’

Solution = A Fast Evaluating ML proxy of Power Flow

(772-LAB. EE, IITR) 11 July @ AI-EVS 2025 pareek@ee.iitr.ac.in 5/25



How good an ML tool can be for risk estimation?

If NRLF-based statistical estimation have error ¢, then same number of ML evaluations
will achieve | True Expected Violation — Estimated Expected Violation|

ML Prediction Confidence
ML Prediction Error

< Leﬁn(1—5)+/\/l5+5h

Lipschitz Constant TArbitrarily Large Number

with confidence 1 — 3, under a condition.

Main Result

Performance using 200, 258 NRLFs = Performance using 801,029 ML Evaluations
Using Gaussian process (GP) model Ley, (1 —06) + M +en ~ 2 X ep,

NRLF Estimation Error

Condition: Probability of the absolute difference between true & predicted voltage (by
ML) being larger than &, is less than or equal to 4.

Proof follows from the fact that with ML performance condition allows to upper bound difference in true and
ML based estimation with Le,, (1 — §) + Mé o = = =, E= wae
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Why Gaussian Process (GP) is suitable for Power Flow learning?

GP regression uses prior knowledge about a function along with data, to predict

unobserved values and quantifying prediction uncertainty.

— Provide performance guarantee without requiring ground truth solutions
— Has low training data requirement due to prior knowledge infusion

A Closed-form Power Flow Approximation Framework is

Flexible = Non-linear forms with complexity-accuracy trade-off

Easy to Evaluate = Faster numerical calculations

— Non-parametric == Works within a power injection range or hypercube

Differentiable — Can be fed into optimization problems

Interpretable = Should provide insights into physical system

Essentially an explicit expression of voltage as a function of power injection which
provides a probabilistic performance guarantee for risk estimation
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GP Working Idea: In Brief

@ Prior Knowledge: Smooth Function

k(zi,zj) = 72 exp { —
y

2
|lzi — x5l
2/2
@ Predict unobserved values: Mean

Thickest Shade of Blue
@ Prediction uncertainty: Variance
: Lighter blue — lower probability
y @ Performance Guarantee®
. P{|V(s) = [u(s) + 70(®)]| 2 em } < 5(7)
T Considering the power flow function is a GP.
(P2-LAB, EE, IITR)
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GP Assumption

p(f(=z:)[£)

p(f(zw) |

Ty

m***
Technology, Uppsala University.

(P2-LAB, EE, IITR)

L
The distribution of f(z*), f(z**) and f(x***) for the three inputs z*, 2** and z***,
conditional on the observed values f(z1), f(z2) and f(x3).

11 July @ AI-EVS 2025

[m]
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Andreas Lindholm et.al. “An introduction to Gaussian process regression” Department of Information
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CFPF Learning: Using Gaussian Process

CFPF Learning Mechanism Training Data— {Sa Vj} ; N_ Samples
Design Matrix— S = [s*...s"...s"]

— s' is i-th power injection vector

Training L. A
— T v; S
Subspace ‘ iz Se ‘ Target Vector— V; = [V}' ... V}"]
Power Flow as a Function:
PRIOR KNOWLEDGE ‘2 = f(s)+e
\ 4 Gaussian Process (GP) function view!
. CFPF Learning
Kernel Selection ————» V;(s)
J

f(sl) ~ gP(O,k(si,sj))
T 2 1SS Zero l\/leanT TKerneI Function
Mean :E[f(s)] = V;(s) =k [K +0.I] "V,

Variance : 02 [f(s)] = k(s,s) — k" [K + 021] 'k

Optimize the kernel hyper-parameters
using log marginal likelihood

CFPF provides mean prediction of voltage and confidence in that prediction

f C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning. MIT press Cambridge, MA,
2006, vol. 2, no. 3.
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CFPF: Forms

Training Data
Vi(s) = [k(s',s) ... k(sV,s)]
Variable s = [p; q]

MT
How Do FormMms LOOK THEN?

Simple, Standard Forms
— Linear: v=As+b

- Quadratic: V;(s) =s"Ms+mTs+r
More Complex but Accurate Forms
N .
Vi(s) =Y a;(i)"
i=1

where, ,3 = 7‘2 exp (7”57; — S||2/212> . Gaussian Kernel

V : Node Voltage Vector; M : Sensitivity Matrix; I : Slope Vector;
S : Node Power Injection Vector

(P2-LAB, EE, IITR)
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Performance of CFPF)

x 1093

Max. pu errorin V,

Average of Predicted STD

@ Subspace-wise Approximations & Non-Parametric

[ @ iosFor © bogunea

Non-parametric Nature

B Proposed]

\ * Distribution | Max. MAE (pu)
o Normal 1.86E-05
Beta 2.39E-05
T Laplace 2.29E-05
Error Not a Function of Load Mixed 1.74E-05
For 69-Bus System For 33-Bus System

@ Inherent Accuracy Indicator

i

o[V]x 10°

@ Differentiable Functions

’ w5 @ Faster Numerical Evaluations
2 o
@ Model Interpretability via
Hyper-parameters
0
Mean Absolute Ero: ¢, x 10° o Independent from Network Type

Assumptions
Use of Predictive Variance P

For 56-Bus System
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Graph-Structured Kernel for Low Sample
Complexity CFPF Learning

Combining Physics and Intuition into GP
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Standard CFPF Learning: Limitations & Solutions

X Curse-of-Dimensionality = Learn individual low-dimensional
Complexity O(N?) with N training sub-function & combine
samples; Systems < 100-Bus Lower Curse-of-Dimensionality

® Mesh Network Flows = Capturing localized voltage-power
Power injection-voltage relationship is injection relationship will be easier
not direct; Higher order nonlinearity Suitable for Mesh Network Flows

X Limited Use = Low-dimensional GPs
Full GP is restrictive to be used within Useful as surrogate in Bayesian
Bayesian Optimization Optimization approach

An Ideal Situation Would be if

A high-dimensional voltage function is breakable into
low-dimensional sub-functions

(PQ-LAB. EE, IITR) 11 July @ AI-EVS 2025 pareek@ee.iitr.ac.in
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Additive Gaussian Processes

k(1 o)) ko (w2, xh) T ki(z, @) + ka(xa, 2h)
1-D Kernel 1-D Kernel Additive Kernel
. .
fi(z1) fa(w2) fi(z1) + fa(z2)
1-D GP Prior 1-D GP Prior Additive GP Prior

Vi(s) = Vi (s1) + -+ V" (sm)
=GPy (0, Ki(s1,)) ++ + GPr (0, Kn(5m, )
= Additive Gaussian Process

[m] = = =
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Using Network-Structure to Achieve Additive GP Architecture

— Neighboring power injections have highly correlated effect on node voltages

— Effect of far away power injections is approximately equal to sum of individual
effects

Number of Nodes

1 Bl
ko (s',s%) Zkb xb,xb

Neighborhood Aggregated Injection Vectors

Power Injection Vectors

Node Neighborhood Kernel

Target Node Voltage

Vi(s) = Vii(x1) +--- + Vs (x8))

.~ Latent Node Voltage Functions

ka([s1;82;812], )

Idea of vertex degree kernel construction
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Active Learning: Lower Samples and Stopping Criteria

% What: Learning by successively selecting the next training point ‘intelligently’

% Why: To speed-up the learning process using unlabeled data i.e. only input data
needed =—> Low Sample Complexity = Less Power Flow Samples Needed

% Concept: Next training point is the one which has maximum uncertainty in

underlying function

t+1

s = arg max U} (s) — Only Function Evaluation

seLl

Concept of Active Learning

Noisy Observations: sin(8) + €

0o 02 08 10

o o5
Input: @

(=)

(P2-LAB, EE, IITR)

Provides a Proxy of Error = Stopping Criteria

Finding maximum variance point for
large-dimensional input space is hard
—> Used mostly up to 20-dimensions
—> Power systems have 100s of uncertain power
injections
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Network-swipe Active Learning

_ 9 15| 15| T 15|
Variance: 0 [f(s)] = ky(xp,xp) — {Zkb(xb,xb)] [Ki4-+ Kg]™! [Zkb(bexb)}
b=1 b=1 N——— " L b=1

Constant Matrix “————"
Constant Variable Vector Variable Vector

Neighborhood Aggregated Injection Vectors xp's have Overlap

EHL b1ty tio ot
[si"';s5" ;85" | = argmax oy (Xp,,Xp, ,)
S1,89,8
2;;1 105258 Algorithm 1 Network-Swipe Algorithm for AL
1 "
_\ Require: T, D, {s',V'}, 0}, canota> Tmaz
1: Tnitialize GP model (6) with VDK (9)
[s57';si3'] = argmax ot (x5 %p,, %D, ) 2 while 03(s") > 07, canota 40
— 5,812 Solve (11) for ig‘l, sequentially for i = 1...d

3:
XDy 4 Solve ACPF for load s'*! to get Vt+!
5. Update GP model with (s**!, V*); t =t +1
6: If runtime > 7),,, then break
7: end while

Output: Compute /14(s),07(s) for final GP

Idea of network-swipe algorithm for AL.
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Benchmarking Performance

Node 21 Node 44 Node 95
E-2.5
. —A VDK 50| WGP 100
Comparison of MAE £2s | @
=lg-2
performance of 5 E30 je=po | 5 8 =
. =10-:
different methods for ; i ; ga0 |- 220 i ;
s E-35 s s
118-Bus System é <

‘ E-35 2 -

E-4.0

Table: Sample and Time Requirement for Risk Estimation in 500-Bus System

Node | Samples  Time(s) MAE (pu)x10~% AVE x 104
4 67 - 70 28 - 30 311+ 1.0 7.8+ 05

268 102-109 53-58 468 £1.5 7.9 +0.2

320 72-76 30-33 466 £ 1.8 78+ 04

321 70 - 77 30-33 496 £ 25 6.8 + 0.5
- Mean evaluation time for 80100 samples is 33.2 sec

VDK-AL performs the risk estimation for any node in & 120 sec
NRLF running time for 20025 samples is ~ 4205 sec

Demonstrating the efficiency and low sample-complexity of AL-VDK &
Usefulness for power system operation under uncertainty
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Active Learning Performance for 1354-Bus System

— 100 samples are sufficient to learn a node voltage function with 2236 random power injections

—380kV
~—Transformer 25x%10-* 9.0x10°3 —

—220kV [~ Gest Full P Tral- 200 sarmple _
= Best Vbk ap Tl 100 Sampie] 5
3 [—Batch Size 10; Proposed <
= g
5 &

o £ 6ox10
3 15x10+* 2
S 3
2 2
< E
g g

£ 1xio % 40x10-
H

09x10-4 34x103 b b —1 L1
25 s0 75 100 o 25 50 75 100
Training Samples Training Samples
Learning V5 for 1354-Bus system
Learning Method (Training Samples)
. Full GP (200) ‘ VDK-GP (100) ‘ AL (100)
1,354-Buses, 2 enerators 1,991-lines.
35 1 260 g » & 1,99 #PF 5000 \ 2500 100

A random trial of active learning outperforms large number of passive learning attempts
Reduced time complexity of 25-50 times

=] (=) = = == DA
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Application: Uncertainty Quantification (UQ)

[— True, Uniform| 600 [H{—True, Uniform) |— True, Uniform)
Test, Uniform Test, Uniform 400 H— Test uniform
[— True, Normal [— True, Normal [— True, Normal
200 | — Test, Normal [— Test, Normal | — Test, Normal
— -True, Beta 500 H—-True, Beta [— -True, Beta
— Test, Beta — Test, Beta — Test, Beta
300
150 | 400 |-
2 2 2
g 2 300 2
8 10 F 3 g 200 F
200 |-
50 100
100
[ e N—— 0 . 0 1 —
0.900 0.905 0.910 0.915 0.920 0.970 0.972 0.974 0.976 0.978 0.969 0.972 0975 0.978
Vaz(pu) Vas (pu) Vaa (pu)

Density functions for UQ in 118-Bus system for node voltages Va2, Vaz & Vag

Voltage Violation probability(VP) = Probability of voltage value being out of limits

Voltage Violation probability (VP) estimation with various input distributions for 33-bus system

Distribution Normal Beta Laplace  Mixed Comments
Max. Error in VP 0.0026  0.0028 0.0029  0.0009 |[Monte-Carlo — Proposed]|
Time Proposed (s) 1.04 4+ 1.66 + 0.70x4 = 5.5 Train Once; Evaluate Multiple
Time MCS (s) 105.2 103.6 100.4 108.3 Each Time 10000 PF Solving

Single model works for different distributions without the need for retraining
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Multi-Task Vertex Degree Kernel for
CFPF under Network Contingencies

Using ‘Available’ Knowledge to Reduce Training Sample Requirement
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CFPF Learning under Network Contingencies

Using VDK's Ability to Accommodate Graph Structure & Existing Models to Learn CFPF for
‘New’ Network Topology

k3([s1;s3;585;812],-)

k1([s1;s2;83],-)

ka([s1;s2;812],-)

Different sub-kernels of VDK for different topologies of a part of 118-Bus system.

Multi-Task Vertex Degree Kernel (MT-VDK)

Power Injection Vectors Weight
|B| —l M s<—— Number of Source Networks

k‘gT st sJ = Zkb xb,xb W Zkgm(si,sj)

Q m=1
\—,—/ —_—
Target Network Graph VDK on Target Ep VDKs on Source &Em,’S
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More Results

Density

Voltage(pu)

Source Set: A Source Set: B Source Set: C VDK-GP
4000 4000 4000 <+ 15.0
o
3000 > 3000 > 3000 ] 125
2000 \ 22000 \ 22000 3 10
o 1] ]
1000 2 1000 2 1000 w75
0 0 0 < = 50
0.00 25 5.0 7.5 10 0.00 25 50 75 10 0.00 25 50 75 10
MAE (pu) x10-* MAE (pu) x10-* MAE (pu) x10-*

Mean absolute error (MAE) densities for 24 node voltages for 38 different networks (N-1 contingencies).

Average error HALVED using MT-VDK-GP with same number of training sample

Vo Vis Va1

0.995 . o7 N = 776 . 098 Y _ :; 1 ;: __
0.990 Y - 096 P ’*0 A b O O(} I ’:&7 W 097 Lol :’—! g- !} 4*1!: !
L ,‘!{7 ”f,.....o m, Wi - (0, DR ¢ N

Voltage(pu)
Voltage(pu)

0975 2

=] 0.93 0.94 1
== — B-Upper o is — B-Upper| — p-Upper
0.965 P S P S . P L
00 35

5 10 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 25
N-1 Contingency Index

N-1 Contingency Index N-1 Contingency Index

Probabilistic Voltage Envelopes (PVEs) for node voltages & 38 different structures of 30-Bus network
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Summary & Applications

Standard GP — VDK-GP & MT-VDK-GP — Network-Swipe AL

Application Specific Physics-inspired Kernels can help build Interpretable Learning Models in Low
Data Regimes.

Applications of Physics-inspired Power Flow Learning
Deterministic Solution

s '
= T

B Al _—

@ UnDstFiow© Bowgraniotal > Proposed

i
o

Max. pu error in V, x 109
@

34

. . - Toal Rea Power Load (W)
Uncertainty Quantification

b, Linear Power Flow under Uncertainty = ** . e

B, o SN
— — . a o LI /
] i
v

1 105
Voltage Magnitud

Privacy-preserving Feasibility

Uncertainty Quantification Closed-form OPF Proxy Assessment

All above mentioned works incorporate uncertainties in non-parametric manner

[} = =
(P2-LAB. EE, IITR) 11 July @ AI-EVS 2025 pareek@ee.iitr.ac.in




Thank You!

Collaborators

e Dr. Sidhant Misra e Dr. Deepjyoti Deka e Dr. Abhijeet Jayakumar
e Prof. Lalit Goel e Prof. Ashu Verma e Dr. Carlton Coffrin

e Dr. L.P.M.l. Sampath e Prof. Hung D. Nguyen e Dr. Weng Yu
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2
7)LAB

QEE, IIT Roorkee

Our group is currently working on
Machine Learning applications in Power Systems.

We have a few fully funded PhD positions
for motivated candidates interested in this area.

In case you know someone who might be a good fit,
please feel free to refer them to us.

More info: https://psquare-lab.github.io/people/

(772-LAB. EE, IITR) 11 July @ AI-EVS 2025 pareek@ee.iitr.ac.in
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ML Performance Bounds

Theorem

Given for an ML model P{|V(s?) — ‘7(51)| > em} <8 with § € (0,1) for any s € S, and h(:) is
a Lipschitz continuous function with Lipschitz constant L, then the error in expected value
estimation using the ML model, for any s € S, is bounded with probability greater than 1 — 3 as

|E[hp(8)] — Elhm()]| < Lem (1 — 8) + M3 + &y,

where, 8 € (0,1), e, = %, M > |hp(s) — hm(s)|, and N number of samples.

h(-) violation function measuring distance from voltage limits
(P2-LAB, EE, IITR) 11 July @ AI-EVS 2025 pareek@ee.iitr.ac.in 25 /25



Benchmarking

500 independent trials with 100 training samples; Testing: 1000 unique samples

2
o 10 o e
ul 6P sl | pproposed VDKGP)
roposed VDK-GP| —

07425 r 6P
GP " -Prnposed VDK-GP|
T
|
0 i s
—— |
|
i
i i w0

10

Mean Absolute Error (pu)
Mean Absolute Error 1pu)
Maximum Predictive Variance (pu)

Maximum Predictive Variance (pu)

i >
Jpy L s 1 s s Todo L L
Training Samples Training Samples. mTraimng Samplesm mrraming Samp\esmo
Vi within £10% hypercube for 500-Bus system. V1 within +£10% hypercube for 118-Bus system.
Three Times Lower Sample Complexity 50% Lower Error & 100 Times Confident Model
- _ MAE (pu)
Proposed VDK-GP outperforms a 3-layer, Node Proposed |  DNN
1000-neuron Deep Neural Network for 1 1 522%x10-5 | 1.89 x 107
using 100 training samples in 118-Bus 43 | 8.70 x 10~° | 9.77 x 10~*

5 4
system 117 2.26 X 10 9.05 x 10

Accurate, loading independent power flow model with extremely low sample complexity
Useful for power system operation under uncertainty
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More Insights: Extrapolation & Depth Effect

<
> " * Trained
é 6x107* I-| & Extrapolated wa
§ 4 Extreme Extrapolated <> <> <> ;
o ax10- - <><><><><> §3
5 o ®
2 < £
2 2x10 22
c
g 1
=
0.0000 *I' 1 1 1 1 1 1 1 1 1 1 1
+10% *12% +14% +16% *18% +20% +25% Depth or Layers Depth or Layers
Hypercube Size
Extrapolation of VDK-GP model trained within Effect of depth on learning quality of three
+10% hypercube for 118-Bus system. different voltage function in 500-Bus system.
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VDK-GP V/S MT-VDK-GP

— - Maximum

— - Minimum

|
* — Mean
:

Relative MAE (MT-VDK-GP/VDK-GP)

0 100 200 300 400
Training Samples

Relative MAE variation with respect to training samples— defined as the ratio of MAE obtained
using MT-VDK-GP to VDK-GP.

Valleys in the relative error curves reflect the superior performance of the
proposed MT-VDK-GP at low data regimes.
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