

Power & Energy Management-II or Algorithms for Power Grid -II

Spring 2025-26 — Power System Optimization

Instructor: Parikshit Pareek

*Annotated
Version.*

Department of Electrical Engineering,
IIT Roorkee

Lecture 0: Course Logistics & Overview

Logistics

We will be covering: **Optimization Algorithms applied to Power Systems**

- ▶ Instructor: Parikshit Pareek (pareek@ee.iitr.ac.in)
- ▶ Teaching Assistant: Ayushi Jolotia (ayushi_j@ee.iitr.ac.in)
- ▶ Course Website: https://psquare-lab.github.io/teaching/course_EET110/

Logistics

We will be covering: **Optimization Algorithms applied to Power Systems**

- ▶ Instructor: Parikshit Pareek (pareek@ee.iitr.ac.in)
- ▶ Teaching Assistant: Ayushi Jolotia (ayushi_j@ee.iitr.ac.in)
- ▶ Course Website: https://psquare-lab.github.io/teaching/course_EET110/
- ▶ **Structure:** 2×2 Hrs Lectures per week. Tue 9-11AM & 5-7PM
- ▶ **Tools:** Python (Pyomo/Pandapower) or Julia (JuMP/PowerModels.jl).

Logistics

Linear Programming
MLP Nonlinear Programming

We will be covering: **Optimization Algorithms applied to Power Systems**

- ▶ Instructor: Parikshit Pareek (pareek@ee.iitr.ac.in)
- ▶ Teaching Assistant: Ayushi Jolotia (ayushi_j@ee.iitr.ac.in)
- ▶ Course Website: https://psquare-lab.github.io/teaching/course_EET110/
- ▶ **Structure:** 2×2 Hrs Lectures per week. Tue 9-11AM & 5-7PM
- ▶ **Tools:** Python (Pyomo/Pandapower) or Julia (JuMP/PowerModels.jl).
- ▶ **Philosophy:** "Math First, Grid Second." We learn the algorithm (LP/MILP/NLP), then we solve the grid problem. Then move to ML Proxies for Optimization
- ▶ **Discussions:** Piazza; Use class hours effectively for office hours too.

Prerequisites

- ▶ **Optimization:** Linear Algebra (Matrices, Eigenvalues), Calculus (Gradients, Hessians).
- ▶ **Power Systems:** EET-109+ Power Systems I and II
- ▶ **Coding:**

Proficiency in **Python** or **Julia** is non-negotiable.

We will use solvers like Gurobi, IPOPT, and HiGHs.

But I will not cover these in class/discussion.

 piazza

Evaluation Policy (Tentative)

Type	CWS+PRE+PRS	Mid Term	End Term
Total Marks	50	20	30
Components	Lab Assignments (20) Term Paper / Project (30)	Exam	Exam

- **Note:** Term paper will have spill over effect in Mid and End Terms

Evaluation Policy (Tentative)

class sizes

Type	CWS+PRE+PRS	Mid Term	End Term
Total Marks	50	20	30
Components	Lab Assignments (20) Term Paper / Project (30)	Exam	Exam

- **Note:** Term paper will have spill over effect in Mid and End Terms

The Lab Assignments (Coding Tasks):

- ▶ Lab 1: Linear Programming (Dispatch)
- ▶ Lab 2: MILP (Unit Commitment)
- ▶ Lab 3: NLP (AC-OPF)
- ▶ Lab 4: Relaxations (SOCP/SDP)
- ▶ Lab 5: ML Proxy for Optimization

- **Warning:** Plagiarism in code will result in an immediate Zero.
- **Homework Policy:** No Submission Needed; Part of Syllabus

Course Roadmap

➤ Module 1: Optimization Foundations

- ✓ Linear Programming (Simplex, Duality, Shadow Prices)
- ✓ Mixed Integer Linear Programming (Branch & Bound)
- ✓ Nonlinear Programming (KKT Conditions, Newton-Raphson)

Lagrangian
Formulation

Kush- Khun-Taher word n

Basic formulations

Modeling
Lang. Description

Math formulation
→ sol'n
Data

Interior point
Algorithm

Course Roadmap

1P

➤ Module 1: Optimization Foundations

- ✓ Linear Programming (Simplex, Duality, Shadow Prices)
- ✓ Mixed Integer Linear Programming (Branch & Bound)
- ✓ Nonlinear Programming (KKT Conditions, Newton-Raphson)

➤ Module 2: Transmission System Applications

- ✓ DC-OPF, Economic Dispatch, & Markets (LMPs)
- ✓ Unit Commitment (Generator Scheduling)
- ✓ AC-OPF (The Non-convex Physics)

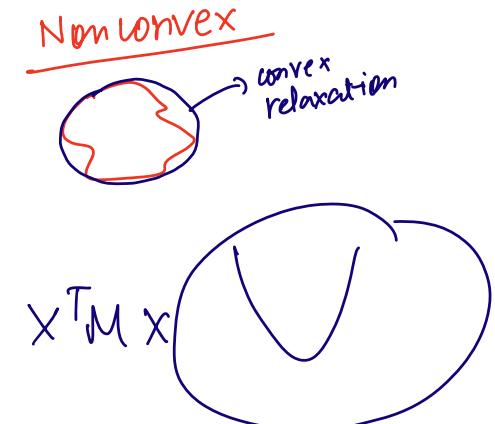
Course Roadmap

➤ Module 1: Optimization Foundations

- ✓ Linear Programming (Simplex, Duality, Shadow Prices)
- ✓ Mixed Integer Linear Programming (Branch & Bound)
- ✓ Nonlinear Programming (KKT Conditions, Newton-Raphson)

➤ Module 2: Transmission System Applications

- ✓ DC-OPF, Economic Dispatch, & Markets (LMPs)
- ✓ Unit Commitment (Generator Scheduling)
- ✓ AC-OPF (The Non-convex Physics)


➤ Module 3: Advanced Architectures

- ✓ Convex Relaxations (SOCP, SDP)
- ✓ ML Proxies for Optimization

↳ *semi definite
prog.*

↳ *Second order
cone*

↳ *Research Papers*

Textbooks and References

Course Material

There is **no required textbook** for this class. Will share these slides.

Reference Books:

- ▶ **S. Boyd and L. Vandenberghe.** *Convex Optimization*. Cambridge University Press, 2004.
Available for free: stanford.edu/~boyd/cvxbook/
- ▶ **H.P. Williams.** *Model Building in Mathematical Programming*, 5th Edition. Wiley, 2013.

Designing Your Term Paper: 3 Paths

I will not give a topic

→ Earnet

Path A: The Replicator

"Verify the Truth"

- ▶ Pick a top-tier paper (IEEE TSG, TPWRS) from last 5 years.
- ▶ Re-implement their formulation.
- ▶ Reproduce their results on the same test system.

Designing Your Term Paper: 3 Paths

Path A: The Replicator

"Verify the Truth"

- ▶ Pick a top-tier paper (IEEE TSG, TPWRS) from last 5 years.
- ▶ Re-implement their formulation.
- ▶ Reproduce their results on the same test system.

Path B: The Improver

"Make it Faster/Better"

- ▶ Take a standard problem (e.g., Unit Commitment).
- ▶ Apply a new technique (e.g., Decomposition, ML-accelerated warm start).
- ▶ Compare computation time vs. standard solvers.

Qualify & Quantify

paper taken

Designing Your Term Paper: 3 Paths

Path A: The Replicator

"Verify the Truth"

- ▶ Pick a top-tier paper (IEEE TSG, TPWRS) **from last 5 years.**
- ▶ Re-implement their formulation.
- ▶ Reproduce their results on the same test system.

Path B: The Improver

"Make it Faster/Better"

- ▶ Take a standard problem (e.g., Unit Commitment).
- ▶ Apply a new technique (e.g., Decomposition, ML-accelerated warm start).
- ▶ Compare computation time vs. standard solvers.

Path C: The Explorer

"New Constraints"

- ▶ Add a new physical constraint to OPF Eg. EV Fleets or new way to add a constraint
- ▶ Formulate the math and solve.
- ▶ Build ML Proxy or ML-embedded Optimization to solve better

Deliverable: Usable Code Repo + Comparison Plots + Clean Report + Slides.
Notebook

Teams: 1-5 Members; Ayushi will share a Google Form; finish it before Next Week's class.

Publication hardest

Term Paper: Timeline & Deliverables

Week	Milestone	Requirement
Week 4	Proposal	1-page abstract + Selected "Base Paper".
Week 8	Update	Mathematical Formulation finalized (LaTeX). <i>→ Flowchart</i>
Week 10	Code Check	Working Code (In a Notebook; Will be made public)
Week 12	Final	Final Report + 10 min Presentation.

Term Paper: Timeline & Deliverables

Week	Milestone	Requirement
Week 4	Proposal	1-page abstract + Selected "Base Paper".
Week 8	Update	Mathematical Formulation finalized (LaTeX).
Week 10	Code Check	Working Code (In a Notebook; Will be made public)
Week 12	Final	Final Report + 10 min Presentation.

Abstract & Report

Abstract: One page having brief intro and objectives

Final Report: IEEE Journal Format: 6 Page. **Max**

Term Paper: Timeline & Deliverables

Week	Milestone	Requirement
Week 4	Proposal	1-page abstract + Selected "Base Paper".
Week 8	Update	Mathematical Formulation finalized (LaTeX).
Week 10	Code Check	Working Code (In a Notebook; Will be made public)
Week 12	Final	Final Report + 10 min Presentation.

Abstract & Report

Abstract: One page having brief intro and objectives

Final Report: IEEE Journal Format: 6 Page.

Grading Criteria:

- ▶ **Reproducibility (40%)**: Can I run your code and get your graphs?
- ▶ **Complexity (30%)**: Did you just run DC-OPF, or did you try something hard?
- ▶ **Clarity (30%)**: How well is the math explained in the report & presentation?

Resources for Term Paper

► Datasets:

MATPOWER / PGLib-OPF (Standard IEEE Grids).

Pecan Street (Load Data).

NREL (Solar/Wind profiles).

► Literature:

IEEE Transactions on Power Systems (TPWRS).

IEEE Transactions on Smart Grid (TSG).

arXiv: eess.SY (Systems and Control).

ICML, ICLR, NeurIPS etc top ML conferences

IEEE Trans. on
sustainable
Energy
Applied Energy

► Tools:

PowerModels.jl (The Gold Standard for Power System Research).

Pandapower (Python-based).

Questions?

"Civilization depends on the grid. The grid depends on optimization."