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EEC 351 Linear Algebra Homework

Question 1: Matrix Operations and Properties

Let

A =

 2 −1 3
0 4 1

−1 2 5

 , B =

1 0 2
3 −1 0
2 1 −1

 .

Task

1. Compute AB and BA; discuss commutativity.

2. Calculate tr(A), tr(B), and tr(AB); examine trace properties.

Question 2: Vector Norms and Distances

Given
x = [3, −4, 0, 2]T , y = [1, 2, −1, 3]T

Task

1. Compute ∥x∥1, ∥x∥2, ∥x∥∞, and cosine similarity cos θ = xT y
∥x∥2∥y∥2

.

2. For x ∈ R2, interpret ∥ · ∥1, ∥ · ∥2 and ∥ · ∥∞ geometrically.

Question 3: Eigenvalues & Eigenvectors

For covariance matrix

C =
[
4 2
2 3

]
,

Task

1. Find eigenvalues and eigenvectors; orthogonalize and normalize them.

Question 4: Quadratic Forms and Definiteness

Let

A =
[

5 −2
−2 2

]
, f(x) = xT Ax.

Task

1. Expand f(x) in x1, x2.

2. Determine definiteness via eigenvalues.

3. ML connection: interpret definiteness in Hessian context and gradient descent stability.
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Question 6:

Task

Let: σ(z) = 1
1+e−z Compute and prove:

1. From first principles calculate σ′(z). Deduce the well-known simplification σ′(z) =
σ(z) (1 − σ(z)).

Question 7: PCA Optimization Proof

Let X ∈ Rn×d, covariance C = XT X.

Task

Provide complete proofs for:

1. Positive Semi-definiteness: Show that C is positive semidefinite.

2. Unit-norm maximization leads to eigenvalue problem: Show that maximizing vT Cv sub-
ject to ∥v∥ = 1 via Lagrange multipliers gives

Cv = λv,

where λ is the corresponding Lagrange multiplier.

3. Characterizing the principal eigenvector: Argue that the solution v maximizing vT Cv

corresponds to the largest eigenvalue of C.
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