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Abstract

Energy-Based Models (EBMs) capture dependencies between variables by as-
sociating a scalar energy to each configuration of the variables. Inference consists
in clamping the value of observed variables and finding configurations of the re-
maining variables that minimize the energy. Learning consists in finding an energy
function in which observed configurations of the variables are given lower energies
than unobserved ones. The EBM approach provides a common theoretical frame-
work for many learning models, including traditional discriminative and genera-
tive approaches, as well as graph-transformer networks, conditional random fields,
maximum margin Markov networks, and several manifold learning methods.

Probabilistic models must be properly normalized, which sometimes requires
evaluating intractable integrals over the space of all possible variable configura-
tions. Since EBMs have no requirement for proper normalization, this problem is
naturally circumvented. EBMs can be viewed as a form of non-probabilistic factor
graphs, and they provide considerably more flexibility in the design of architec-
tures and training criteria than probabilistic approaches.

1 Introduction: Energy-Based Models

The main purpose of statistical modeling and machine learning is to encode depen-
dencies between variables. By capturing those dependencies, a model can be used to
answer questions about the values of unknown variables given the values of known
variables.

Energy-Based Models (EBMs) capture dependencies by associating a scalar en-
ergy (a measure of compatibility) to each configuration of the variables. Inference,
i.e., making a prediction or decision, consists in setting the value of observed variables



and finding values of the remaining variables that minimize the energy. Learning con-
sists in finding an energy function that associates low energies to correct values of the
remaining variables, and higher energies to incorrect values. A loss functional, mini-
mized during learning, is used to measure the quality of the available energy functions.
Within this common inference/learning framework, the wide choice of energy func-
tions and loss functionals allows for the design of many types of statistical models,
both probabilistic and non-probabilistic.

Energy-based learning provides a unified framework for many probabilistic and
non-probabilistic approaches to learning, particularly for non-probabilistic training of
graphical models and other structured models. Energy-based learning can be seen as an
alternative to probabilistic estimation for prediction, classification, or decision-making
tasks. Because there is no requirement for proper normalization, energy-based ap-
proaches avoid the problems associated with estimating the normalization constant in
probabilistic models. Furthermore, the absence of the normalization condition allows
for much more flexibility in the design of learning machines. Most probabilistic mod-
els can be viewed as special types of energy-based models in which the energy function
satisfies certain normalizability conditions, and in which the loss function, optimized
by learning, has a particular form.

This chapter presents a tutorial on energy-based models, with an emphasis on their
use for structured output problems and sequence labeling problems. Section 1 intro-
duces energy-based models and describes deterministic inference through energy min-
imization. Section 2 introduces energy-based learning and the concept of the loss func-
tion. A number of standard and non-standard loss functions are described, including
the perceptron loss, several margin-based losses, and the negative log-likelihood loss.
The negative log-likelihood loss can be used to train a model to produce conditional
probability estimates. Section 3 shows how simple regression and classification mod-
els can be formulated in the EBM framework. Section 4 concerns models that contain
latent variables. Section 5 analyzes the various loss functions in detail and gives suf-
ficient conditions that a loss function must satisfy so that its minimization will cause
the model to approach the desired behavior. A list of “good” and “bad” loss functions
is given. Section 6 introduces the concept of non-probabilistic factor graphs and infor-
mally discusses efficient inference algorithms. Section 7 focuses on sequence labeling
and structured output models. Linear models such as max-margin Markov networks
and conditional random fields are re-formulated in the EBM framework. The liter-
ature on discriminative learning for speech and handwriting recognition, going back
to the late 80’s and early 90’s, is reviewed. This includes globally trained systems
that integrate non-linear discriminant functions, such as neural networks, and sequence
alignment methods, such as dynamic time warping and hidden Markov models. Hier-
archical models such as the graph transformer network architecture are also reviewed.
Finally, the differences, commonalities, and relative advantages of energy-based ap-
proaches, probabilistic approaches, and sampling-based approximate methods such as
contrastive divergence are discussed in Section 8.
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Figure 1: A model measures the compatibility between observed variables X and variables to
be predicted Y using an energy function E(Y, X). For example, X could be the pixels of an
image, and 'Y a discrete label describing the object in the image. Given X, the model produces
the answer Y that minimizes the energy E.

1.1 Energy-Based Inference

Let us consider a model with two sets of variables, X and Y, as represented in Fig-
ure 1. Variable X could be a vector containing the pixels from an image of an object.
Variable Y could be a discrete variable that represents the possible category of the ob-
ject. For example, Y could take six possible values: animal, human figure, airplane,
truck, car, and “none of the above”. The model is viewed as an energy function which
measures the “goodness” (or badness) of each possible configuration of X and Y. The
output number can be interpreted as the degree of compatibility between the values of
X and Y. In the following, we use the convention that small energy values correspond
to highly compatible configurations of the variables, while large energy values corre-
spond to highly incompatible configurations of the variables. Functions of this type are
given different names in different technical communities; they may be called contrast
functions, value functions, or negative log-likelihood functions. In the following, we
will use the term energy function and denote it E(Y, X). A distinction should be made
between the energy function, which is minimized by the inference process, and the loss
functional (introduced in Section 2), which is minimized by the learning process.

In the most common use of a model, the input X is given (observed from the world),
and the model produces the answer Y that is most compatible with the observed X .
More precisely, the model must produce the value Y*, chosen from a set ), for which
E(Y, X) is the smallest:

Y™ = argminy ., E(Y, X). (1)

When the size of the set ) is small, we can simply compute E (Y, X) for all possible
values of Y € ) and pick the smallest.
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[-0.90 41.11 68.51 34.25 -0.10 0 0.05]
[0.84 109.62 109.62 34.25 0.37 0 -0.04]
[0.76 68.51 164.44 34.25-0.4200.16]
[0.17 246,66 123,33 34.25 0.85 0 -0,04]
[0.16 178.14 54.81 34.250.38 0 -0.14]
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Figure 2: Several applications of EBMs: (a) face recognition: Y is a high-cardinality discrete
variable; (b) face detection and pose estimation: Y is a collection of vectors with location
and pose of each possible face; (c) image segmentation: Y is an image in which each pixel
is a discrete label; (d-e) handwriting recognition and sequence labeling: Y is a sequence of
symbols from a highly structured but potentially infinite set (the set of English sentences). The
situation is similar for many applications in natural language processing and computational
biology; (f) image restoration: Y is a high-dimensional continuous variable (an image).



In general, however, picking the best Y may not be simple. Figure 2 depicts sev-
eral situations in which ) may be too large to make exhaustive search practical. In
Figure 2(a), the model is used to recognize a face. In this case, the set ) is discrete
and finite, but its cardinality may be tens of thousands [Chopra et al., 2005]. In Fig-
ure 2(b), the model is used to find the faces in an image and estimate their poses. The
set ) contains a binary variable for each location indicating whether a face is present
at that location, and a set of continuous variables representing the size and orienta-
tion of the face [Osadchy et al., 2005]. In Figure 2(c), the model is used to segment
a biological image: each pixel must be classified into one of five categories (cell nu-
cleus, nuclear membrane, cytoplasm, cell membrane, external medium). In this case,
Y contains all the consistent label images, i.e. the ones for which the nuclear mem-
branes are encircling the nuclei, the nuclei and cytoplasm are inside the cells walls,
etc. The set is discrete, but intractably large. More importantly, members of the set
must satisfy complicated consistency constraints [Ning et al., 2005]. In Figure 2(d),
the model is used to recognize a handwritten sentence. Here ) contains all possible
sentences of the English language, which is a discrete but infinite set of sequences of
symbols [LeCun et al., 1998a]. In Figure 2(f), the model is used to restore an image
(by cleaning the noise, enhancing the resolution, or removing scratches). The set )
contains all possible images (all possible pixel combinations). It is a continuous and
high-dimensional set.

For each of the above situations, a specific strategy, called the inference procedure,
must be employed to find the Y that minimizes E(Y, X). In many real situations, the
inference procedure will produce an approximate result, which may or may not be the
global minimum of E(Y, X) for a given X. In fact, there may be situations where
E(Y, X) has several equivalent minima. The best inference procedure to use often
depends on the internal structure of the model. For example, if )} is continuous and
E(Y, X) is smooth and well-behaved with respect to Y, one may use a gradient-based
optimization algorithm. If Y is a collection of discrete variables and the energy func-
tion can be expressed as a factor graph, i.e. a sum of energy functions (factors) that
depend on different subsets of variables, efficient inference procedures for factor graphs
can be used (see Section 6) [Kschischang et al., 2001, MacKay, 2003]. A popular ex-
ample of such a procedure is the min-sum algorithm. When each element of ) can be
represented as a path in a weighted directed acyclic graph, then the energy for a partic-
ular Y is the sum of values on the edges and nodes along a particular path. In this case,
the best Y can be found efficiently using dynamic programming (e.g with the Viterbi
algorithm or A*). This situation often occurs in sequence labeling problems such as
speech recognition, handwriting recognition, natural language processing, and biolog-
ical sequence analysis (e.g. gene finding, protein folding prediction, etc). Different
situations may call for the use of other optimization procedures, including continuous
optimization methods such as linear programming, quadratic programming, non-linear
optimization methods, or discrete optimization methods such as simulated annealing,
graph cuts, or graph matching. In many cases, exact optimization is impractical, and
one must resort to approximate methods, including methods that use surrogate energy
functions (such as variational methods).



1.2 What Questions Can a Model Answer?

In the preceding discussion, we have implied that the question to be answered by the
model is “What is the Y that is most compatible with this X ?”, a situation that occurs
in prediction, classification or decision-making tasks. However, a model may be used
to answer questions of several types:

1. Prediction, classification, and decision-making: “Which value of Y is most com-
patible with this X ?” This situation occurs when the model is used to make hard
decisions or to produce an action. For example, if the model is used to drive a
robot and avoid obstacles, it must produce a single best decision such as “steer
left”, “steer right”, or “go straight”.

2. Ranking: “Is Y7 or Y5 more compatible with this X ?” This is a more complex
task than classification because the system must be trained to produce a complete
ranking of all the answers, instead of merely producing the best one. This situ-
ation occurs in many data mining applications where the model is used to select
multiple samples that best satisfy a given criterion.

3. Detection: “Is this value of Y compatible with X ?” Typically, detection tasks,
such as detecting faces in images, are performed by comparing the energy of a
face label with a threshold. Since the threshold is generally unknown when the
system is built, the system must be trained to produce energy values that increase
as the image looks less like a face.

4. Conditional density estimation: “What is the conditional probability distribution
over Y given X ?” This case occurs when the output of the system is not used
directly to produce actions, but is given to a human decision maker or is fed to
the input of another, separately built system.

We often think of X as a high-dimensional variable (e.g. an image) and Y as a
discrete variable (e.g. a label), but the converse case is also common. This occurs
when the model is used for such applications as image restoration, computer graphics,
speech and language production, etc. The most complex case is when both X and Y
are high-dimensional.

1.3 Decision Making versus Probabilistic Modeling

For decision-making tasks, such as steering a robot, it is merely necessary that the sys-
tem give the lowest energy to the correct answer. The energies of other answers are
irrelevant, as long as they are larger. However, the output of a system must sometimes
be combined with that of another system, or fed to the input of another system (or to a
human decision maker). Because energies are uncalibrated (i.e. measured in arbitrary
units), combining two, separately trained energy-based models is not straightforward:
there is no a priori guarantee that their energy scales are commensurate. Calibrating
energies so as to permit such combinations can be done in a number of ways. However,
the only consistent way involves turning the collection of energies for all possible out-
puts into a normalized probability distribution. The simplest and most common method



for turning a collection of arbitrary energies into a collection of numbers between 0 and
1 whose sum (or integral) is 1 is through the Gibbs distribution:

e—BE(Y.X)

P(Y[X) = T e PEGX) 2
yey

where (3 is an arbitrary positive constant akin to an inverse temperature, and the denom-
inator is called the partition function (by analogy with similar concepts in statistical
physics). The choice of the Gibbs distribution may seem arbitrary, but other proba-
bility distributions can be obtained (or approximated) through a suitable re-definition
of the energy function. Whether the numbers obtained this way are good probability
estimates does not depend on how energies are turned into probabilities, but on how
E(Y, X) is estimated from data.

It should be noted that the above transformation of energies into probabilities is
only possible if the integral [ _, e PEW.X) converges. This somewhat restricts the
energy functions and domains ) that can be used. More importantly, there are many
practical situations where computing the partition function is intractable (e.g. when
Y has high cardinality), or outright impossible (e.g. when ) is a high dimensional
variable and the integral has no analytical solution). Hence probabilistic modeling
comes with a high price, and should be avoided when the application does not require
1t.

2 Energy-Based Training: Architecture and Loss Func-
tion

Training an EBM consists in finding an energy function that produces the best Y for
any X . The search for the best energy function is performed within a family of energy
functions £ indexed by a parameter W

E={EW,Y,X): WeWh 3)

The architecture of the EBM is the internal structure of the parameterized energy func-
tion E(W,Y, X). At this point, we put no particular restriction on the nature of X,
Y,W,and £. When X and Y are real vectors, £ could be as simple as a linear com-
bination of basis functions (as in the case of kernel methods), or a set of neural net
architectures and weight values. Section gives examples of simple architectures for
common applications to classification and regression. When X and Y are variable-size
images, sequences of symbols or vectors, or more complex structured objects, £ may
represent a considerably richer class of functions. Sections 4, 6 and 7 discuss several
examples of such architectures. One advantage of the energy-based approach is that it
puts very little restrictions on the nature of £.

To train the model for prediction, classification, or decision-making, we are given
a set of training samples S = {(X% Y?) : i = 1... P}, where X' is the input for
the i-th training sample, and Y is the corresponding desired answer. In order to find
the best energy function in the family £, we need a way to assess the quality of any



particular energy function, based solely on two elements: the training set, and our prior
knowledge about the task. This quality measure is called the loss functional (i.e. a
function of function) and denoted £(E, S). For simplicity, we often denote it L(W, S)
and simply call it the loss function. The learning problem is simply to find the W that
minimizes the loss:
W* = min L(W,S). 4)
Wew

For most cases, the loss functional is defined as follows:
P
L(B,S) = = S LY E(W, Y, X%) + R(W) )
) P /’:1 ? b ) *

It is an average taken over the training set of a per-sample loss functional, denoted
LY, E(W,Y,X?")), which depends on the desired answer Y and on the energies
obtained by keeping the input sample fixed and varying the answer Y. Thus, for each
sample, we evaluate a “slice” of the energy surface. The term R(W) is the regularizer,
and can be used to embed our prior knowledge about which energy functions in our
family are preferable to others (in the absence of training data). With this definition,
the loss is invariant under permutations of the training samples and under multiple
repetitions of the training set.

Naturally, the ultimate purpose of learning is to produce a model that will give
good answers for new input samples that are not seen during training. We can rely
on general results from statistical learning theory which guarantee that, under simple
interchangeability conditions on the samples and general conditions on the family of
energy functions (finite VC dimension), the deviation between the value of the loss
after minimization on the training set, and the loss on a large, separate set of test
samples is bounded by a quantity that converges to zero as the size of training set
increases [Vapnik, 1995].

2.1 Designing a Loss Functional

Intuitively, the per-sample loss functional should be designed in such a way that it
assigns a low loss to well-behaved energy functions: energy functions that give the
lowest energy to the correct answer and higher energy to all other (incorrect) answers.
Conversely, energy functions that do not assign the lowest energy to the correct answers
would have a high loss. Characterizing the appropriateness of loss functions (the ones
that select the best energy functions) is further discussed in following sections.

Considering only the task of training a model to answer questions of type 1 (pre-
diction, classification and decision-making), the main intuition of the energy-based ap-
proach is as follows. Training an EBM consists in shaping the energy function, so that
for any given X, the inference algorithm will produce the desired value for Y. Since
the inference algorithm selects the Y with the lowest energy, the learning procedure
must shape the energy surface so that the desired value of Y has lower energy than all
other (undesired) values. Figures 3 and 4 show examples of energy as a function of Y
for a given input sample X' in cases where Y is a discrete variable and a continuous
scalar variable. We note three types of answers:
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Figure 3: How training affects the energies of the possible answers in the discrete case: the
energy of the correct answer is decreased, and the energies of incorrect answers are increased,
particularly if they are lower than that of the correct answer.
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Figure 4: The effect of training on the energy surface as a function of the answer Y in the con-
tinuous case. After training, the energy of the correct answer Y is lower than that of incorrect
answers.



e Y': the correct answer
e Y*i: the answer produced by the model, i.e. the answer with the lowest energy.

e Y. the most offending incorrect answer, i.e. the answer that has the lowest
energy among all the incorrect answers. To define this answer in the continuous
case, we can simply view all answers within a distance € of Y as correct, and all
answers beyond that distance as incorrect.

With a properly designed loss function, the learning process should have the effect
of “pushing down” on E(W,Y*, X?), and “pulling up” on the incorrect energies, par-
ticularly on E(W, Y, X?). Different loss functions do this in different ways. Section 5
gives sufficient conditions that the loss function must satisfy in order to be guaranteed
to shape the energy surface correctly. We show that some widely used loss functions
do not satisfy the conditions, while others do.

To summarize: given a training set S, building and training an energy-based model
involves designing four components:

1. The architecture: the internal structure of E(W,Y, X).

2. The inference algorithm: the method for finding a value of Y that minimizes
E(W,Y, X) for any given X .

3. The loss function: L(W, S) measures the quality of an energy function using the
training set.

4. The learning algorithm: the method for finding a W that minimizes the loss
functional over the family of energy functions &£, given the training set.

Properly designing the architecture and the loss function is critical. Any prior knowl-
edge we may have about the task at hand is embedded into the architecture and into
the loss function (particularly the regularizer). Unfortunately, not all combinations of
architectures and loss functions are allowed. With some combinations, minimizing the
loss will not make the model produce the best answers. Choosing the combinations of
architecture and loss functions that can learn effectively and efficiently is critical to the
energy-based approach, and thus is a central theme of this tutorial.

2.2 Examples of Loss Functions

We now describe a number of standard loss functions that have been proposed and used
in the machine learning literature. We shall discuss them and classify them as “good”
or “bad” in an energy-based setting. For the time being, we set aside the regularization
term, and concentrate on the data-dependent part of the loss function.

2.2.1 Energy Loss

The simplest and the most straightforward of all the loss functions is the energy loss.
For a training sample (X%, Y?), the per-sample loss is defined simply as:

Lenergy (Y, EOW, Y, X%)) = E(W,Y*, X"). (6)

10
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Figure 5: The hinge loss (left) and log loss (center) penalize E(W,Y*, X\ )~ E(W,Y"*, X*) lin-
early and logarithmically, respectively. The square-square loss (right) separately penalizes large
values of E(W,Y"*, X*) (solid line) and small values of E(W,Y"*, X*) (dashed line) quadrati-
cally.

This loss function, although very popular for things like regression and neural network
training, cannot be used to train most architectures: while this loss will push down
on the energy of the desired answer, it will not pull up on any other energy. With
some architectures, this can lead to a collapsed solution in which the energy is con-
stant and equal to zero. The energy loss will only work with architectures that are
designed in such a way that pushing down on E(W, Y%, X*) will automatically make
the energies of the other answers larger. A simple example of such an architecture is
EW, Y1 X% = ||y — G(W, X?)||?, which corresponds to regression with mean-
squared error with G being the regression function.

222 Generalized Perceptron Loss

The generalized perceptron loss for a training sample (X*, Y?) is defined as

Lperceptron(yi; E(VVv Y, X7)) = E(Wy Yza X7) - {/nel% E(Wa Y, X7) @)

This loss is always positive, since the second term is a lower bound on the first term.
Minimizing this loss has the effect of pushing down on E(W,Y?, X*), while pulling
up on the energy of the answer produced by the model.

While the perceptron loss has been widely used in many settings, including for
models with structured outputs such as handwriting recognition [LeCun et al., 1998a]
and parts of speech tagging [Collins, 2002], it has a major deficiency: there is no mech-
anism for creating an energy gap between the correct answer and the incorrect ones.
Hence, as with the energy loss, the perceptron loss may produce flat (or almost flat)
energy surfaces if the architecture allows it. Consequently, a meaningful, uncollapsed
result is only guaranteed with this loss if a model is used that cannot produce a flat
energy surface. For other models, one cannot guarantee anything.

2.2.3 Generalized Margin Losses

Several loss functions can be described as margin losses; the hinge loss, log loss, LVQ2
loss, minimum classification error loss, square-square loss, and square-exponential loss
all use some form of margin to create an energy gap between the correct answer and the

11



incorrect answers. Before discussing the generalized margin loss we give the following
definitions.

Definition 1 Let Y be a discrete variable. Then for a training sample (X*,Y"), the
most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are incorrect:

Yi = argminYEyandY;éyi E(W, Y, Xl). (8)

IfY is a continuous variable then the definition of the most offending incorrect answer
can be defined in a number of ways. The simplest definition is as follows.

Definition 2 Let Y be a continuous variable. Then for a training sample (X', Y?), the
most offending incorrect answer Y" is the answer that has the lowest energy among
all answers that are at least € away from the correct answer:

yvi— argminYey,HYinlbeE(W’ Y, X’) )

The generalized margin loss is a more robust version of the generalized perceptron
loss. It directly uses the energy of the most offending incorrect answer in the contrastive
term:

Linargin(W, Y*, X') = Qun (E(W, Y, X"), E(W,Y", X")) . (10)

Here m is a positive parameter called the margin and Q.,,(e1, e2) is a convex function
whose gradient has a positive dot product with the vector [1, —1] in the region where
EW, Y X")+m > E(W, Y, X?). In other words, the loss surface is slanted toward
low values of E(W, Y, X*) and high values of E(W, Y, X*) wherever E(W, Y, X?)
is not smaller than (W, Y, X) by at least m. Two special cases of the generalized
margin loss are given below:

Hinge Loss: A particularly popular example of generalized margin loss is
the hinge loss, which is used in combination with linearly parameterized en-
ergies and a quadratic regularizer in support vector machines, support vector
Markov models [Altun and Hofmann, 2003], and maximum-margin Markov net-
works [Taskar et al., 2003]:

Lpinge(W,Y", X") = max (0,m + E(W,Y", X") — E(W,Y", X")), (11)

where m is the positive margin. The shape of this loss function is given in Figure 5. The
difference between the energies of the correct answer and the most offending incorrect
answer is penalized linearly when larger than —m. The hinge loss only depends on
energy differences, hence individual energies are not constrained to take any particular
value.

Log Loss: a common variation of the hinge loss is the log loss, which can be seen
as a “soft” version of the hinge loss with an infinite margin (see Figure 5, center):

Liog(W, Y, X*) = log (1 + PV XD =EWYIXD) (12)

LVQ2 Loss: One of the very first proposals for discriminatively train-
ing sequence labeling systems (particularly speech recognition systems)

12



is a version of Kohonen’s LVQ2 loss. This loss has been advocated
by Driancourt and Bottou since the early 90’s [Driancourtet al., 1991a,
Driancourt and Gallinari, 1992b, Driancourt and Gallinari, 1992a, Driancourt, 1994,
McDermott, 1997, McDermott and Katagiri, 1992]:

W,YﬁXﬂ—E(VV,Y’QXQ)) (13)

SE(W, Y X1) ’

where 0 is a positive parameter. LVQ?2 is a zero-margin loss, but it has the peculiarity of
saturating the ratio between E(W,Y?, X%) and E(W,Y?, X?) to 1 + §. This mitigates
the effect of outliers by making them contribute a nominal cost M to the total loss.
This loss function is a continuous approximation of the number of classification errors.
Unlike generalized margin losses, the LVQ2 loss is non-convex in E(W, Y, X) and
E(W, Y X1).

MCE Loss: The Minimum Classification Error loss was originally proposed by
Juang et al. in the context of discriminative training for speech recognition sys-
tems [Juang et al., 1997]. The motivation was to build a loss function that also ap-
proximately counts the number of classification errors, while being smooth and differ-
entiable. The number of classification errors can be written as:

0 (E(W,Y", X") = E(W,Y", X")), (14)

. E
Liyee(W,Y", X*) = min (1, max (O, (

where 6 is the step function (equal to zero for negative arguments, and 1 for positive
arguments). However, this function is not differentiable, and therefore very difficult to
optimize. The MCE Loss “softens” it with a sigmoid:

Lice(W,Y', X" =0 (E(W,Y", X") — E(W,Y", X")), (15)

where o is the logistic function o(z) = (14 e~*)~'. As with the LVQ2 loss, the satu-
ration ensures that mistakes contribute a nominal cost to the overall loss. Although the
MCE loss does not have an explicit margin, it does create a gap between E(W, Y, X'?)
and E(W, Y, X*). The MCE loss is non-convex.

Square-Square Loss: Unlike the hinge loss, the square-square loss treats
the energy of the correct answer and the most offending answer sepa-
rately [LeCun and Huang, 2005, Hadsell et al., 2006]:

Leqsq(W, YE, XP) = E(W,Y", X%)2 + (max(0,m — E(W, Y%, X'))>.  (16)

Large values of E(W,Y?, X*) and small values of E(W, Y, X*) below the margin m
are both penalized quadratically (see Figure 5). Unlike the margin loss, the square-
square loss “pins down” the correct answer energy at zero and “pins down” the incor-
rect answer energies above m. Therefore, it is only suitable for energy functions that
are bounded below by zero, notably in architectures whose output module measures
some sort of distance.

Square-Exponential [LeCun and Huang, 2005, Chopra et al., 2005,
Osadchy et al., 2005]: The square-exponential loss is similar to the square-square
loss. It only differs in the contrastive term: instead of a quadratic term it has the
exponential of the negative energy of the most offending incorrect answer:

Loqeexp(W, Y1, XT) = E(W, Y, XT)2 4 e~ BOVYLXT), (17)
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where < is a positive constant. Unlike the square-square loss, this loss has an infinite
margin and pushes the energy of the incorrect answers to infinity with exponentially
decreasing force.

2.2.4 Negative Log-Likelihood Loss

The motivation for the negative log-likelihood loss comes from probabilistic modeling.
It is defined as:

Lan(W,Y", X') = EW,Y", X*) + Fs(W, Y, X"). (18)

Where F is the free energy of the ensemble { E(W,y, X?), y € V}:

Fs(W, ¥, X") = %bg </€ye><p (—BE(W,y,Xi))>- 19
Yy

where (3 is a positive constant akin to an inverse temperature. This loss can only be
used if the exponential of the negative energy is integrable over )/, which may not be
the case for some choices of energy function or ).

The form of the negative log-likelihood loss stems from a probabilistic formulation
of the learning problem in terms of the maximum conditional probability principle.
Given the training set S, we must find the value of the parameter that maximizes the
conditional probability of all the answers given all the inputs in the training set. Assum-
ing that the samples are independent, and denoting by P(Y¢| X% W) the conditional
probability of Y given X that is produced by our model with parameter W, the condi-
tional probability of the training set under the model is a simple product over samples:

P
P!, YPIx L xPow) = [ Poyixw). (20)

i=1
Applying the maximum likelihood estimation principle, we seek the value of W that

maximizes the above product, or the one that minimizes the negative log of the above

product:
P P

—log [[PYIX', W) =) —log P(Y'| X", W). 1)

i=1 =1

Using the Gibbs distribution (Equation 2), we get:

P P
~log [ P(Yi|x',w)=3"pEW,Y" X") + log/ § e AEWY.XY) — (22)
i=1 ye

i=1

The final form of the negative log-likelihood loss is obtained by dividing the above
expression by P and (3 (which has no effect on the position of the minimum):

1 & o1
£nll(WaS) = F Z <E(Wa YZaXl) + Blog/

eﬂE(W’y’X”) @)
i=1 yeY

14



While many of the previous loss functions involved only E(W,Y?, X?) in their con-
trastive term, the negative log-likelihood loss combines all the energies for all val-
ues of Y in its contrastive term F3(W, ), X?). This term can be interpreted as the
Helmbholtz free energy (log partition function) of the ensemble of systems with ener-
gies E(W,Y, X*), Y € Y. This contrastive term causes the energies of all the answers
to be pulled up. The energy of the correct answer is also pulled up, but not as hard as it
is pushed down by the first term. This can be seen in the expression of the gradient for
a single sample:

8L,111(W, Yi,Xi) 8E(W, Yi,Xi) _/ 8E(VV,Y,Xi)
Yey

= P(Y|X", W), (24
where P(Y|X*, W) is obtained through the Gibbs distribution:

. efﬁE(varXi)
PY|X', W) =

Ty e B =
Hence, the contrastive term pulls up on the energy of each answer with a force propor-
tional to the likelihood of that answer under the model. Unfortunately, there are many
interesting models for which computing the integral over ) is intractable. Evaluating
this integral is a major topic of research. Considerable efforts have been devoted to ap-
proximation methods, including clever organization of the calculations, Monte-Carlo
sampling methods, and variational methods. While these methods have been devised as
approximate ways of minimizing the NLL loss, they can be viewed in the energy-based
framework as different strategies for choosing the Y’s whose energies will be pulled
up.

Interestingly, the NLL loss reduces to the generalized perceptron loss when 5 — oo
(zero temperature), and reduces to the log loss (Eq. 12) when ) has two elements (e.g.
binary classification).

The NLL loss has been used extensively by many authors under various
names. In the neural network classification literature, it is known as the cross-
entropy loss [Sollaetal., 1988]. It was also used by Bengio et al. to train an
energy-based language model [Bengio et al.,2003]. It has been widely used un-
der the name maximum mutual information estimation for discriminatively train-
ing speech recognition systems since the late 80’s, including hidden Markov
models with mixtures of Gaussians [Bahl et al., 1986], and HMM-neural net hy-
brids [Bengio et al., 1990, Bengio et al., 1992, Haffner, 1993, Bengio, 1996]. It has
also been used extensively for global discriminative training of handwriting recog-
nition systems that integrate neural nets and hidden Markov models under the
names maximum mutual information [Bengio et al., 1993, LeCun and Bengio, 1994,
Bengio et al., 1995, LeCun et al., 1997, Bottou et al., 1997] and discriminative for-
ward training [LeCun et al., 1998a]. Finally, it is the loss function of choice for train-
ing other probabilistic discriminative sequence labeling models such as input/output
HMM [Bengio and Frasconi, 1996], conditional random fields [Lafferty et al., 2001],
and discriminative random fields [Kumar and Hebert, 2004].

Minimum Empirical Error Loss: Some authors have argued that the negative log
likelihood loss puts too much emphasis on mistakes: Eq. 20 is a product whose value
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is dominated by its smallest term. Hence, Ljolje et al. [Ljolje et al., 1990] proposed
the minimum empirical error loss, which combines the conditional probabilities of the
samples additively instead of multiplicatively:

Linee(W, Y, XY =1 — P(Y?| X", W). (26)
Substituting Equation 2 we get:

e~ BEWY' X"

Lmee(W; Y, X ) =1- fygy e—BEWy,X1)"

27)

As with the MCE loss and the LVQ2 loss, the MEE loss saturates the contribution
of any single error. This makes the system more robust to label noise and outliers,
which is of particular importance to such applications such as speech recognition, but
it makes the loss non-convex. As with the NLL loss, MEE requires evaluating the
partition function.

3 Simple Architectures

To substantiate the ideas presented thus far, this section demonstrates how simple mod-
els of classification and regression can be formulated as energy-based models. This sets
the stage for the discussion of good and bad loss functions, as well as for the discussion
of advanced architectures for structured prediction.

E(W,Y, X) E(W,Y,X)

~_ b

X Y X Y X

Figure 6: Simple learning models viewed as EBMs: (a) a regressor: The energy is the dis-
crepancy between the output of the regression function Gw (X) and the answer Y. The best
inference is simply Y* = Gw (X), (b) a simple two-class classifier: The set of possible an-
swers is {—1,+1}. The best inference is Y* = sign(Gw (X)), (c) a multiclass classifier: The
discriminant function produces one value for each of the three categories. The answer, which
can take three values, controls the position of a “switch”, which connects one output of the dis-
criminant function to the energy function. The best inference is the index of the smallest output
component of Gw (X).
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o Graph transformer networks are hierarchical sequence modeling systems in which
the objects that are manipulated are trellises containing all the alternative inter-
pretations at a given level. Global training can be performed using stochastic
gradient by using a form of back-propagation algorithm to compute the gradi-
ents of the loss with respect to all the parameters in the system.
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